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1. Introduction 

This report contains the results of a statistical analysis of the 1979 Survey of 

Inmates of State Correctional Facilities. The statistical analysis was undertaken to 

gain insight into the prison population, the criminal careers of prisoners and the 

nature of the offender population. The analysis is complicated for three major 
, 

reasons. First, the survey does not represent a random sample from the offender 

population. This means that. a variety of statistical adjustments are needed to 

overcome the sampling bias. Second, the survey was not adjusted for the length­

biasing effect of sentence lengths. This problem, which is explained in detail later in ' 

the report,. requires adjustments to properly interpret the nature of the criminal 

careers of those in prison. Third, both (he prisoner and offender populations are 

very heterogeneous, exhibiting a wide range of offending behavior (crime types) and 

rates. It is crucial to use statistical models which can capture this heterogeneity 

rather than using traditional models and methods in which the populations are treated 

as homogeneous. 

This report is organized as follows. Section HIERMODEL contains a discussion 

of hierarchical modelling, a simple approach that incorporates heterogeneity into the 

offender population. The associated estimation technique, empirical Bayes 

methodology, is described and illustrated by an example. Section LENGTHBIAS 

contains an introduction of the problem of length-biased sampling and its impact on 

proper statistical inference length-biased sampling is a particular problem for proper 

analysis of prison 3urvey data. Section EXPLOR contains an exploratory analysis of 

the prison survey data. Section MODELFIT contains results of model fitting using the 

Conclusions are also present!3d in ,~ection 
" I, 

techniques outlined in earlier sections. 

MODELFIT. In Section FURTHER, we discuss further analyses which could be 

performed with this data set. 
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2. Hierarchical Models 

The analysis of prison inmate survey data gives rise to many complex 

statistical problems. On the surface, one starts with a random sample of inmates in 

a collection of correctional institutions and administers an extensive survey 

instrument, for example the Survey of Prison Inmates of 1974 or 1979. Given that 

this is a random sample, it is tempting to generalize the results to a reference 

population. This is certainly. valid if the reference population is taken to be all 

prisoners at the time of the survey, but it is not valid if the reference population is 

taken to be the population of all offenders.' The difficulty is that the collection of 

all offenders in all correctional institutions at any point in time is not a random 

sample of all offenders. In fact, the prisoners tend to be more frequent offenders, 
, 

offenders with prior records and often commit more violent crimes. It follows that 

a random sample of prisoners at any particular timo cannot provide a representative 

sample of the offender population at that time. Nevertheless, one wants to use such 

a survey to learn about typical offenders and to investigate the impact of variations 

of enforcement and imprisonment policies on the offender and prison populations. 

This goal can be realized, but a great deal of care is required. 

Interestingly, there is a statistical approach which allows one to use a random 

sample of prisoners to learn about the offender population. The approach is based 

on the following ideas. We recognize that the offender population is very 

heterogeneous. It consists of individuals having a wide range of crime commission 

frequencies, distinct crime-type selections, different arrest rates, different career 

lengths, etc. The heterogeneity of the offender population can be built into a 

statistical model by introducing a hierarchical structure. There are two levels to the 

model. At the top ieve!, each individual is assigned a set of parameter values which 

govern his criminal career. Each individual is assigned an independent set of 

parameters; however, these parameters are drawn from a common multivariate 

distribution. Each individual is at a lower level of the hierarchy. Once the parameter 

values have been assigned, the offender proceeds to embark on a criminal career. 

A final issue concerns using hierarchical models to help to correct for the bias 

of surveying only prisoners instead of a sample of the general offender population. 

'Even generalizing to the population of prisoners must be done with care, the 
phenomenon of length-biased sampling must be taken into account. This is discussed 
in detail in Section 3 . 
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There are two aspects to the inference. First, one would like to use the survey 

data set to learn about the overall offender population. For example, to learn the 

distribution of the individual offense rates or of the career lengths. This is 

especially useful in characterizing the offender population and understanding the. 

impact of changes in criminal justice system policies. Second, one would like to 

make estimates of the parameters associated with each individual. There is a 

standard statistical approach to this called empirical Bayes analysis. This approach 

allows first for the estimation of the distribution of offender parameters and then 

for the estimation of the individual parameters. We will use the empirical Bayes 

approach in this study, but will restrict attention to the first aspect, namely 

estimating the distribution of the offender population parameters. We will shortly 

present an example to illustrate the empirical Bayes method. 

If we focus on any particular offender and take note of his/her attributes (age, 

race, offense rate, career length, etc. - some of which are unobservable but can be 

represented as unknown parameters), then using a statistical model, we can compute 

the likelihood of his/her record at the time of the survey and the likelihood he/she 

will be in prison at the time of the survey. When dealing with prison survey data 

one must take note of the fact that only prisoners are eligible to be in the survey, 

and this conditioning event has a differential impact across the offender population, 

making it more likely that a high rate or violent offender will be included in the 

survey. By conditioning on this event, one corrects the likelihood function, and 

proper inferences can be made. 

2.1. Example - Empirical Bayes Estimation 

The survey of prison inmates consists of extensive data for a sample of 

prisoners. The individuals in the sample are very heterogeneous in that they exhibit 

wide variability in their parameter values. Given their histories, we would like to 

estimate the individual parameter values and the distribution of parameter values in 

the population. Consider the following simulation experiment. Suppose that we have 

a sample of 10 individuals. Each has a parameter X chosen from an exponential 

distribution with unknown parameter jJ. That is, A is a random variable with density 

function f(A) = jJexp(-jJA) , A>O. Each of the individuals commits crimes and mayor 

may not be arrested for each of them. We assume that the times between arrests 

are independent and exponentially distributed with mean 1/A where A is the parameter 

choosen by that individual. Assume that we have 5 interarrest times for each 

individual or a total of 50 data points. We wish to estimate jJ (which gives the 

population distribution) and A 1, .•• ,A 10 for the 10 individuals. The following is a 
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simulated data set for /l= 1. The 10 values of A- were drawn from an exponential (1) 

distribution. For any subject, 5 interarrest times were generated from an exponential 

distribution with the chosen parameter. 

Table 1: Interarrest Times 

Subject A- 1 2 3 4 5 Avg.G<) (lIx) Empirical 
Number Bayes 

1 0.931 1.10 2.82 0.35 0.26 0.85 1.016 0.929 .0.931 
2 0.070 13.78 1.77 12.91 4.39 6.16 7.802 0.128 0.150 
3 0.485 0.65 3.08 1.44 0.66 7.79 2.724 0.367 0,409 
4 0.102 3.23 2.21 1.55 5.86 5.98 3.766 0.266 0.302 
5 0.296 0.69 0.35 1.84 1.78 2.12 1.356 0.737 0.765 
6 0.172 8,42 0.05 4.28 6.31 0,46 3.904 0.256 0.291 
7 2.010 0.03 0,41 0.40 0.26 0.14 0.248 4.032 2.601 
8 2.172 0.16 0.38 0.28 0.10 0.36 0.256 3.906 2.556 
9 0.108 7.34 0.48 17.39 2.98 11.32 7.902 0.127 0.148 

10 1.630 4.24 0.22 0.09 0.78 1.12 1.290 0.775 0.798 

If one were to ignore the hierarchical structure in which the 10 individuals are 

related through the exponential (/l) distribution, then an individual A-. would usually be 
I 

estimated by the maximum likelihood estimate l/X. Consequently, subject 1 would 
I 

be estimated by .929, virtually equal to the true value of .. 931. Most of the 

estimates are reasonable except for subjects 7, 8, 10 and perhaps 5. An overall 
10 - 2 

measure of the accuracy of the 10 estimates is given by t:)\ - 1/X.) = 8.072. 

We now use the empirical Bayes approach. This requires first estimating /l, 
then estimating the individual A- values. The estimate of /l is the unique solution of 

the fixed point equation: 

10 [_ ] 
~ 1 1/(X

j 
+ /l/5) =25/{3/l). 

In this case, /l = 1.067, nearly equal to its actual value of 1.00. Next, an individual A­

is estimated by the formula 6/(1.067 + 5XJ. The individual estimates are given in 
I 

the Empirical Bayes column of Table 1. Here the overall measure of accuracy 
10 

becomes ~ 1 (\ - empirical Bayes estimate)2 = 1.477, a major reduction from the 

8.072 value using the MLE alone. It should be noted that major improvements occur 

for subjects 7 and 8. This simulation experiment is merely to illustrate the empirical 

Bayes method. In the example, it appears that the method offers very large 

ir-:\provements in mean square error over individual maximum likelihood estimates. 

This is true, but in this case is partly the product of assuming each A- is sampled 

from -an exponential distribution. In practice we will not know the form of the 

distribution at the level of the hierarchy, and so will be forced to use a flexible 
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family of distributions. The important point is that one can consider models in 

which individuals exhibit hett~rogeneity and can solve the estimation problems with 

empirical Bayes methods. Th,ese methods appear to be ideally suited to dealing with 

the large heterogeneity encountered in criminal justice data sets. The reader should 

consult Morris {1983}, Deely land Lindley {1981} or Dempster, Rubin and Tsutakawa 

(1981) for an overview of the empirical Bayes estimation procedure, Rolph, 'Chaiken 

and Houchens (1983) have used hierarchical models as well. 
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3. Length-Biased Sampling Problems 

In this section, we discuss a difficulty which arises in the analysis of prison 

survey data, namely length-biased sampling. The 1974 or 1979 Survey of Inmates of 

State Correctional Facilities are carried out essentially by taking a random sample of 

. prisoners over a short period of time. This gives a random sample of prisoners in 

one sense, but not in another. Basically, it offers a picture of the occupancy' of the 

prison cells but may not offer a clear picture of a "typical" prisoner. A brief 

discussion of length-biased sampling and its effects is given by Karlin and Taylor 

(1975, p. 175, p. 195). We illustrate with three simulation examples. 

3.1. Example 1 

Consider the following experiment. Suppose we consider a prison with 10 cells. 

At time 0, each cell is filled with a prisoner having a random sentence length (in the 

experiment we assume sentence lengths have an exponential distribution with a mean 

of 24 months). When a sentence is completed, a new prisoner enters that cell, again 

serving a random length sentence. The simulated sentences are presented in Table 

HYPOOCCUPAN. At any fixed time, we can examine the sentence lengths of the 

prisoners in the 10 cells. 

Table 2: Hypothetical Cell Occupancies 

Cell number Sentences (in months) 
1 60, 2, 4, 12, 28, 8, 13, 28, 14, 62, 40 
2 50, 3, 18, 14, 13, 25, 4, 24, 6, 60, 20, 21 
3 23, 7, 33, 65, 3, 7, 1, 4, 11, 24, 73 
4 7, 6, 77, 8, 1, 9, 13, 58, 14, 30, 13, 22 
5 2, 36, 1, 49, 14, 74, 17, 102 
6 5, 23, 4, 19, 44, 48, 7, 6, 60, 37 
7 19, 1, 27, 1, 4, 23, 18, 6, 1, 98, 3, 8, 6, 1, 2, 16, 22 
8 22, 6, 9, 1, 59, 44, 10, 54, 8, 29 
9 3, 9, 35, 18, 14, 20, 15, 19, 32, 4, 8, 46, 38 

10 14, 4, 7, 60, 36, 31, 13, 18, 17, 4, 8, 63 

There are a total of 116 sentences with an average length of 22.48 (close to 

the mean 24 of the distribution). Suppose we now look at the sentence lengths 

being served if we look at all the cells at time 10 years (120 months), 15 years (180 

months) and 20 years (240 months). They are in Table SENSER. 

It can easily be seen that the sentence lengths observed at the three time 

points are generally much longer than the "typical" sentence lengths. Indeed the 

three averages are 43.1 at 120 months, 46.3 at 180 months and 44.7 at 240 months. 
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Table 3: Sentences Served at Different Times 

cell number 120 months 180 months 240 months 

1 13 62 40 

2 25 60 21 

3 65 73 13 

4 13 14 22 

5 74 17 102 

6 48 60 37 

7 98 98 22 

8 44 54 29 

9 15 08 38 

10 36 17 63 

This is roughly twice as long as the average sentence length of 22.48. This is as 

expected and is an illustration of length-biasing. If we take a snapshot of sentence 

lengths at a fixed time, we are likely to see longer rather than shorter sentences. 

3.2. Example 2 

We now consider a second simulation example to illustrate that the sampling 

scheme used is more likely to capture more violent offenders or offenders with 

longer records. This is a product of the length-biased sampling and the fact that 

long sentences are highly correlated with violent offenses or long records. 

Suppose there are two types of offenders, low rate (L) and high rate (H). Low 

rate offenders have sentences of length 1 while high rate offender have sentences of 

length 5. Assume that when a sentence is completed, a new offender appears to fill 

the cell and is equally likely to be L or H. As in example 1, there are 10 cells in the 

prison. Table CELLOCC shows the occupancy of each cell over the first 20 time 

units. 

Table 4: Hypothetical Cell Occupancies 

All numbl=r Offender Sequence Occupancy at 
time 19.5 

1 L,L,L,L,H,L,H,H H 
2 H,H,H,L,H H 
3 L,L,H,H,H,H H 
4 L,L,H,H,L,H,L,L L 
5 H,H,H,L,L,L,H H 
6 H,H,L,H,L,H H 
7 L,H,L,L,H,H,L,L L 
8 L,H,H,L,L,H,H H 
9 L,H,H,L,H,H H 

10 H,H,L,L,L,L,L,L,H H 
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There are 34 L offenders and 36 H offenders, virtually identical as they should 

be. Nevertheless, at time 19.5, the 10 cells are occupied by 8 Hand 2 L offenders, 

not representative of the 1/2 probability. The problem is again the length-biasing. 

We are more likely (probability 5/6) to find a cell occupied by an H than L because 

of the five to one sentence length ratio. 

3.3. Example 3 

Finally, consider a third example in which every offender receives a sentence 

with the same distribution (exponential with mean 5 months). However, the 

population consists of 50% high rate offenders (average street time between 

imprisonments of 1.25 months) and 50% low rate offenders (average street time 

between imprisonments of 5 months). We generated 1000 such offenders and tracked 

them for 20 months with each offender starting on the street. At that time we 

found 256 low rate offenders and 394 high rate offenders in prison. The average of 

the sentences beiilg served by all of the 650 offenders in prison at that time was 9,6 

months. The average of all sentences generated in the 20 month period for all 1000 

offenders was 5.1 months. We see how the method of sampling offenders who are 

in prison at a fixed time can lead both to finding prisoners serving longer than 

average sentences and to finding a disproportionate number of' high rate offenders 

compared to the population at large. For completeness, the theory of alternating 

renewal processes says that after a long time t, the probability is p/(P+s) that an 

offender will be in prison at time t. Here p is the average time spent in prison per 

sentence and s is the average time spent on the street. Given a 50-50 mixture of 

high and low rate offenders, the expected number of high rate offenders in prison at 

time t is 1/2 X 1000 X 5+ ~.25 ::: 400 and for low rate offenders it is 1/2 X 1000 X 

5~5 = 250. The expected sentence length for those in prison is 2p ::: 10, in our 

example. One can see if the simulation results conform closely to the theory. 

These three examples illustrate the problems which can arise when one tries to 

use prison survey data to make inferences about offenders in prison. Fortunately, it 

is rather easy to correct each of these effects, and this is done in Section 

CORRECTS. 
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4. Exploratory Analysis of Prison Inmate Data 

In this section, we present an analysis of the 1979 Survey of Prison Inmates. 

The overall goal is to gain insight into the evolution of criminal careers. 

Consequently, we focused on the time sequence of events: when did the career begin 

- (juvenile or adult - at what age). How many imprisonments has the offender had - of 

what length? - for what crimes? How much street time separated the imprison'ments? 

Do covariates such as age or juvenile record matter? The goal, then, is to gain 

insight into criminal careers and to build models for them. This is a sequential 

process in which one begins with the simplest models and proceeds to more 

complicated mOdels as necessary. 

Before proceeding it is important to mention that there are problems with the 

survey data. Some, such as the length-biased sampling, can be suitably corrected 

with statistical adjustmen'. Others cannot be so simply corrected. First, there are 

certain internal inconsistencies in the data and cases where the interviewer did not 

follow the survey instrument instructions. This problem is discussed below. Second, 

there are problems associated with any self-report survey not based on official 

records. One can expect to find biases in the set of inmates who chose to 

participate in the study. One cannot be sure of the veracity_ of those who do 

participate. Furthermore, there are clear recollection biases for such a survey 

instrument. People tend to report in round numbers and accuracy decays strongly 

with time. All of these issues indicate that the results of our analysis must be 

treated as tentative until they can be replicated using different data sets. 

We began by examining the data in detail to see how it might systematically 

depart from what would be predicted by the simplest stochastic models we have 

considered. We looked at the street times preceeding imprisonments as well as the 

times served for the various crime types. We looked at whether or not the offender 

had served time as a juvenile and the offender's race. We also compared first 

imprisonments to later ones. In all analyses of the data, we used only those 

inmates whose stated career histories were internally consistent. That is, we 

excluded all inmates who stated that they were imprisoned a certain number of 

times, but gave details on a different number of imprisonments. This left us with 

7,033 inmates serving a total of 10,873 imprisonments. Using this imprisonment 

data, it is possible to study the sequence of street times and imprisonment lengths 

for each offender. We describe these next. 
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4.1. Street Times 

Street times, measured in months, for any particular offender can be separated 

into the time before the first imprisonment and the times between imprisonments. 

First, consider the' street times preceeding imprisonments for the various types of 

crime. We classified imprisonments according to the most serious charge listed by 

the offender. The first street time for an offender is defined to begin at the 18th 

birthday or after release from prison, if the offender was in prison on the 18th 

birthday. 

4.1.1. Race and Offense Type 

The first tabulation is according to race. Table OFFENSEBYRACE gives the 

median and average street times preceeding all imprisonments in the sample arranged 

by type of offense and race. The category "Other Violent" includes rape and 

aggravated assault. The category "Other Property" includes larceny and auto theft. 

The category "Other" includes all non-violent, non-property crimes such as drug 

offenses. For all offense types except the catch-all category "Other", blacks spent 

less time on the street before imprisonment. However, the differences are much 

smaller than the differences among the different offense types. The latter exhibits 

large variability ranging from 41.9 months for burglary to 118.9 months for murder 

for the overall average. 

.. /' '~"': ... 
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. Table 5: Months of Street Time Tabulated 

Murder 

Robbery 

Other 
Violent 

Buglary 

Other 
Property 

Other 

Not 
Specified 

ALL 

Black 
67.26 

115.11 
514 

33.00 
46.44 
1090 

55.50 
90.99 

984 

27.00 
40.93 

730 

35.00 
56.59 
1175 

56.09 
80.00 

640 

40.00 
71.06 

17 

67.65 
5145 

Non Black 
77 .53 

122.62 
525 

34.00 
56.70 

773 

60.00 
99.22 

1010 

27.00 
42.59 

1076 

43.00 
70.11 
1378 

49.00 
77.82 

934 

46.00 
86.02 

30 

74.39 
5728 

ALL 

118.91 
1039 

50.70 
1863 

95.16 
1994 

41.92 
1806 

63.89 
2553 

78.71 
1574 

80.61 
47 

71.20 
10873 

by Offense and Race 

Median 
Average 
Count 

~.- - . _., .. _" ... : ...... ~ : 
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4.1.2. Time Until First Imprisonment 

Next, we investigated the times betwaen imprisonments after the first and 

compared them with the street time before the first imprisonment. Since offenders 

who have been imprisoned as juveniles may be treated differently by the criminal 

. justice system, we distinguish them from those not arrested as juveniles. Table 

FIRST summarizes this data. 

Table 6: 

First 
Adult 
Imprisonment 

Later 
Adult 
Imprisonments 

Comparison of Times Until First Adult Imprisonment 
With Times Between Later Imprisonments 

No Juvenile With Juvenile 
Imprisonments Imprisonments 

64.0 28.0 Median 
97.1 41.4 Average 
6032 935 Count 

25.2 18.0 
41.1 29.8 
2650 lllO 

It should be noted that 146 imprisonments are missing from this table, because the 

offender did not say whether or not he/she had been imprisoned as a juvenile. (This 

involves 66 different offenders.) The most striking feature of this table is the large 

difference between the time until first adult imprisonment and the times between 

later imprisonments. Also, there is a remarkable similarity between the later times 

between imprisonments for those with no juvenile record and the time until the first 

adult imprisonment for those with a juvenile record.. It is as if a juvenile 

imprisonment history played the same role as the first adult imprisonment in 

shortening street time. Another feature of note is the fact that there are only 2657 

later adult imprisonments for those 6034 offenders who had no juvenile 

imprisonments, whereas there are more later imprisonments (1099), for those with a 

juvenile imprisonment, than there are offenders (933), This suggests that those with 

a juvenile record are more likely to be repeat visitors to prison as adults. The large 

differeuce between time until first imprisonment and times between later 

imprisonments suggests that there may be some offenders who delay many months 

beyond age 18 before embarking on their criminal careers. 

....-. - ... ~.... ... . .... -." .. .., .... , .- ...... ~. -".. ... . . . 
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4.1.3. Sucessive Street Times 

The previous subsection compared times to first adult arrest with the average 

of the subsequent street times. It is important to study the sequences of street 

times more carefully. Table JUVBYPRIOR below is used to see if the decrease in 

times between imprisonments continues beyond the second adult imprisonment. In 

this table we have treated the first adult imprisonment of those with a Juvenile 

history as the second adult imprisonment, in the light of the results from Table 6 

above. 

Priors 

o 

1 

2 

3 

4 

5 
or 

More 

ALL 

Table 7: Street Times Classified By Juvenile History and Number 
of Prior Imprisonments 

No Juvenile 
Imprisonments 

64.00 
97.13 

6032 

28.00 
44.52 

1721 

21. 00 
34.90 

615 

21.00 
36.69 

205 

24.00 
29.89 

69 

22.10 
31.30 

40 

80.03 
8682 

With Juvenile 
Imprisonments 

o 

28.00 
41.42 

935 

18.50 
30.51 

643 

19.84 
30.59 

298 

16.00 
28.09 

III 

11.00 
21.52 

58 

35.13 
2045 

Not 
Stated 

51.00 
72.14 

66 

30.84 
37.15 

60 

9.00 
14.91 

14 

18.00 
48.03 

5 

78.00 
78.00 

1 

o 

51.49 
146 

ALL 

96.86 
6098 

43.29 
2716 

32.46 
1272 

33.23 
508 

29.05 
181 

25.51 
98 

71.20 
10873 

Median 
Average 
Count 

There appears to be a smaller decrease from one to two priors than from zero to 

one prior, and the street times are fairly stable after that point. Those offenders 

with imprisonments as juveniles continue to have consistently shorter street times 

between imprisonrnel.cs throughout their careers. 
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4.2. Imprisonment Lengths 

We now consider the other part of criminal careers, the imprisonment lengths. 

In all analyses described in this section, the current imprisonment is not considered, 

because it is censored, that is, we do not know how long it is, except that. it is at 

least as long as the time already spent at the time the survey was taken. 

4.2. 1. Race and Offense Type 

Table PRISONOFFBYRACE gives the median and average time spent in prison 

tabulated by race and offense type. 

Table 8: Months of Prison Time Tabulated by Offense and Race 

Black Non Black ALL 

42.000 47.500 Median 
Murder 59.084 65.0GO 60.815 Average 

29 12 41 Count 

24.000 33.500 
Robbery 32.851 40.560 35.792 

240 148 388 

Other 9.000 9.000 
Violent 19.025 20.413 19.715 

246 243 489 

12.570 14.000 
Burglary 17.008 18.141 17.657 

348 466 814 

Other 7.250 9.000 
Property 10.723 14.056 12.432 

648 682 1330 

6.000 5.000 
Other 10.737 11.793 11. 357 

321 456 777 

ALL 
16.690 17.519 17.123 

1833 2007 3840 

It would appear that blacks spent slightly less time in prison per imprisonment for 

all offense types except those in the catch-all category "Other". This is surprising, 

since Table 5 indicates that blacks spent less time on the street leading up to 

imprisonment for all offense types except "Other". The differences between race, 

however, are not nearly as large as those between offense type. 
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4.2.2. First Imprisonments 

One plausible line of reasoning suggests that the criminal justice system 

punishes repeat oHenders more severely than first offenders, hence the first 

imprisonment would be expected to be shorter than later ones. Table FIRSTPRI 

. illustrates 

Table 9: 

First 
Adult 
Imprisonment 

Later 
Adult 
Imprisonments 

Comparison of Lengths Of First Adult Imprisonment 
With Lengths Of Later Imprisonments 

No Juvenile With Juvenile 
Imprisonments Imprisonments 

9.0 12.0 Median 
15.3 17.9 Average 
1721 643 Count 

12.0 12.0 
18.5 20.1 

929 467 

that this is indeed the case in the data set, although later imprisonment times for 

inmates who had been imprisoned as juveniles were not as much longer than the first 

one as for those with no juvenile imprisonments. Once again, this suggests that the 

existence of a juvenile imprisonment plays a similar role to the' role played by the 

first adult imprisonment. 

4.2.3. Successive Imprisonments 

Next, we examined the sequence of times spent in prison categorized by 

offense type. In this analysis, an inmate with a juvenile record is assumed to have 

one adult imprisonment prior to the actual first adult imprisonment. 

To clarify Table PRIPRIORBYOFFENSE, the 11 inmates in the murder category in 

the 1 prior imprisonment column are all people who served their second adult 

imprisonment for murder, regardless of the offense for which they served their first 

adult imprisonment. This table shows that the second adult imprisonment tends to 

be longer than the first and the third longer than the second, but the later ones tend 

to be shorter. This surprising observation could be explained by two different 

reasons. First, offenders who get four or more adult imprisonments must be getting 

shorter imprisonment times just to be able to fit so many into a I~time. Secondly, 

these offenders may be committing less serious crimes, and, hence be getting 

shorter sentences. 

.. ......... ... . 
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Table 10: Imprisonment Times by Number of Prior Imprisonments 
and Offense Type 

Number Of Prior Imprisonments 
0 1 2 3 4 5 or More ALL 

39.000 55.000 67.500 56.000 Median 
Murder 52.656 72.366 81.250 56.000 60.815 Average 

25 11 4 1 0 0 41 Count 

23.000 31.500 42.000 31.000 22.000 

Robbery 32.510 35.499 46.737 45.500 27.367 35.792 

177 140 48 16 7 0 388 

Other 9.000 12.000 10.000 5.000 9.000 3.500 

Violent 17.792 21. 368 28.397 12.662 15.500 12.650 19.715 

245 145 58 23 6 12 489 

12.000 13.000 17.500 12.000 13.500 28.500 

Burglary 16.019 18.309 20.14,0 17.277 17.133 27.667 17.657 

331 300 124 43 10 6 814 

Other 6.470 9.250 9.600 12.500 5.800 8.000 

Property 10.015 13.051 14.709 20.246 14.968 7.503 12.432 

637 446 165 52 19 11 1330 

6.000 5.330 6.000 4.500 2.000 3.000 

Other 10.015 13 .127 14.197 8.743 5.326 11.922 11.357 

366 229 109 46 18 9 777 

ALL 
15.309 18.227 21.038 18.083 13.936 13.359 17.123 

1781 1272 508 181 60 38 3840 
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4.3. Ages of Inmates 

There is concern that the imprisonment process may not be stationary over 

time. That is, there may be local, regional or national trends toward longer or 

shorter street times or toward longer of shorter imprisonment times. It also might 

be the case that an offender may terminate his career or simply stop being 

imprisoned after some age. In the detailed comparisons, we look only at ages 30 

and below, because the survey data become very thin {i.e. very few observations in 

each category} beyond that age. This tends to reduce the impact of long-term trends 

as well. 

4.3.1. Comparison of Age Distributions 

Figure AGECOMPARE shows the empirical distribution of the ages of inmates in 

the 1979 prison inmate sample together with the distribution of ages of people in the 

United States population at large in 1979. The difference between the two 

distributions is striking, and suggests that prisoners are an age-biased sample from 

the population at large. Offenders of ages 19-24 are over represented in the survey 

compared with the relative size of this group in the population. 

4.3.2. Relation Between Age and Street Time 

We also considered the relationship between the age at release from prison and 

the time spent on the street until the next imprisonment. (Times until the first 

imprisonment are not considered here.) Figures 1 through 6 display boxplots of the 

natural logarithms of street times between imprisonments arranged by the type of 

offense at the end of the street time and the age at the beginning of the street 

time. To read the plots, the I's appear at the sample quartiles and the + appears at 

the sample median. The --'s extend to 1.5 times the distance between the two I's 

or until the most extreme observation, within the 1.5 interval, whichever comes first. 

If there are more extreme observations outside the interval, they are indicated by *'s. 

If any observation is more than 3 times the distance between the I's above or 

below an I, it is indicated by an 0, to denote "outlier." 

To convert the logarithm of street time back to street time, it is necessary to 

exponentiate. We recall that 1 corresponds to 3 months, 2 to about 7 months, 3 to 

20 months, etc. To illustrate with an example, consider the first row of Figure 2, 

consisting of 42 observations corresponding to age 18. The median is around 3.6 or 

about 36 months. Here the 1.5 times interquartile range distance is approximately 

1.8, and our interval extends from about 1.8 (6 months) to 5,4 (221 months). There is 

an observation outside this interval at 0.0 (1 month). 
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Figure 1: Comparison of Population and Sample Age Distritutions 



19 

The purpose of the plots was to use them to look for some sort of trend in 

street time with age, indicating a non-stationarity of the street time process. The 

plots are of the natural logarithm of street times rather than the actual street times, 

because the distributions of street times are so skewed that visual comparison is 

virtually impossible in normal units units of time (months). There appears to be no 

visually noticeable trend in any of the plots, although there appear to be some 

fluctuations in some of them. The boxplots for Robbery, Other Violent, Burglary and 

Other Property show a surprising amount of stability over age, in spite of the small 

sample ,size. Murder and other show somewhat less stability but still do not exhibit 

any trends. Apparently this group is quite homogeneous (within offense type). This 

indicates that trends can be largely ignored for this range of ages. There isn't 

enough data in each offense type on offenders above age 30 to make with 

confidence any statements about trends. 
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Figure 2: 
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Figure 3: Boxplots of Log(Street Times) Before Imprisonment For Robbery 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7: Boxplots of Log(Street Times) Before Imprisonment For Other 
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4.3.3. Relation Between Age and Lengths of Imprisonment 

Next we look to see if there is any noticeable trend in imprisonment length 

with age. Once again, we have made boxplots of the natural logarithm of 

imprisonment lengths, because the lengths in· months are so heavily skewed. 

None of the plots shows a noticeable trend in either direction as age increases, 

although the Property and "Other" crimes have a hint of upward trend starting in the 

mid to late 20's. Indeed, the Figure 10 for Burglary exhibits remarkable stationarity. 

These plots together with those in Section 4.3.2 suggest that the stationarity 

assumption of the stochastic models we incend to fit may be a good approximation 

when adjusted for offense type. However, the analyses in Sections 4.1.3 and 4.2.3 

suggest that stationarity does not hold for overall street times and imprisonment 

lengths. This might be due to a trend toward more serious offenses later in life for 

those who continue to be imprisoned. 

Figure 8: 80xpl~ts of Log{Jmprisonment Time) for Robbery 
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Figure 9: Boxplots of Log(lmprisonment Time) for Other Violent 
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Figure 10: Boxplots of Log(lmprisonment Time) for Burglary 
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Figure 11: 
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Boxplots of Log(lmprisonment Time) for Other Property 
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4.4. Conclusions From the Exploratory Analysis 

The features which we discovered in the exploratory analysis of the prison 

inmate data, can be summarized as follows: 

• There are differences between blacks and non-blacks in street times and 
imprisonment lengths; however, these differences are small whJ;ln 
compared with the differences between the different offense types or 
between successive imprisonments. 

• Those who have juveni Ie records appear to behave, at the beginning of 
their careers, similarly to the way those with no juvenile record behave 
after release from their first imprisonment. 

CD The time spent on the street before the first imprisonment seems to be 
longer than the time spent between imprisonments. 

• There are sizeable differences in imprisonment lengths between different 
offense types. Specifically, violent offenses lead to shorter 
imprisonments. 

• For those who have completed their first imprisonment, first imprisonment 
tends to be shorter than the later ones, although not dramatically so. 

• The distribution of the ages of inmates is dramatically different from that 
of the ages of people in the general population. The difference between 
the two population age distributions is greatest in the 19-24 age range 
which is greatly over-represented in the sample of inmates. 

• Controlling for offense type, there appears to be no noticeable trend in 
either imprisonment length or street time with the age of the offender, 
over the 18-30 age group. 

We will make use of these findings in constructing statistical models in Section 

MODELFIT. 
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5. Stochastic Model Fitting 

It is clear from the exploratory analyses of Section 4 that a simple model of 

imprisonment would not be adequate to describe the many features we see in the 

1979 prison inmate survey data. In this section, we describe those models which we 

have fit so far to the data, and give an indication of what further work should be 

carried out with this data set in the future. Despite its obvious inadequacies, we 

begin with a very simple model, and then build upon it. 

5.1. The Simplest Model 

The simplest stochastic model which one could fit to the survey data would be 

one in which the street time had the same probability distribution for every inmate 

before every imprisonment. In addition, the model would assign the same 

distribution to every imprisonment length of every individual. If we let these 

distributions be exponential with the mean stree! time equal to 1/8 and the mean 

imprisonment length equal to 1/0, then the likelihood function for the imprisonment 

survey data set would be 

(5.1 ) 

where n is the total number of imprisonments, m is the number of inmates in the 

survey, x is the total of all street times for all inmates, and s is the total of all 

imprisonment lengths for all inmates. The reason a has exponent n-m instead of n 

is that the current imprisonment time for each inmate is censored and has likelihood 

exp(-to) rather than oexp(-to). The maximum likelihood estimates (MLE's) of e and a 
are easily calculated to be e = nix and '& = (n-m}/s. For the survey data we have, n 

= 10,873, m = 7,033, x = 779,356, and s = 242,336. Hence e = 0.013951, and '& = 

0.015846. 

This would lead to the conclusion that offenders have an averge street time of 

71.7 months and an average sentence length of 63.1 months. This model is a 

starting point for our analyses. The average street time and sentence length so 

derived from this model are, however. not appropriate estimates for the offender 

population. The most obvious problem is that the individual offenders in the survey 

do not provide a random sample of the offender population. Rather offenders in the 

sample tend to overrepresent prisoners who have relatively long sentences (the 

length-biasing problem). Moreover, prisoner populations in general are not 

representative of the offender population in that they tend to be more frequent 

offenders and possibly ones who commit more violent crimes. 
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5.2. Correcting the Sampling Bias 

In order to use the data from the survey to make inferences about offenders at 

large, we need to calculate the likelihood conditional on the offender being in prison 

at the time of the survey. This correction is necessary, because the only wayan 

offender can be included in the survey is to be in prison at the time of the survey 

In the simple model introduced in Section 5.1, the probability of being in prison at 

the time of the survey can be calculated to be 

q{8, 0) = ~~~; PaO{1-exp{-[O+o]a)}/{O+o), (5.2) 

where p is the proportion of people in the population whose age is 18+{a/12). We 
a 

stop at age 85 (804 months), because the prison population is almost entirely age 85 

or below. This calculation is made using well-known results for two state 

continuous time Markov chains assuming that each individual is free at age 18. We 

can estimate 0 and 0 by maximum likelihood in this case, but there is no closed 

form solution, because the likelihood function is (5.1) divided by q{O, o)m. The 

maximum likelihood estimates 2 are given by 

e = 0.00602 

b = 0.03955. 

(For purposes of comparison with other models, the log-likelihood of this model is 

-67683. An increase of 2 points in the log-likelihood from the addition of one 

parameter can be considered a marginal improvement.) 

Notice what the effect is of correcting the selection bias. The estimate of the 

imprisonment rate 0 gets much smaller (less than half of what it is in the simplest 

model). This is due to the fact that high rate inmates are more likely to be in the 

sample, hence, the estimated imprisonment rate for the population of offenders at 

large should be smaller than the observed rate for inmates in the sample. Similarly, 

the estimate of the mean imprisonment length 1/0 is now 25.28 months as opposed 

to the 63.1 month estimate of the simple model. Once again, we estimate the 

average imprisonment length for an offender at large to be smaller than the average 

for those in the survey, because long sentences are likely to be over-represented in 

the survey. 

2Throughout this report, we present only the results, not the details, of the 
numerical analysis needed to determine the maximum likelihood estimates and the 
model /og-I ikel ihood. 
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5.3. A Model With Dropout 

Since the distribution of the ages of inmates differs so dramatically from that 

of the population at large (see Figure 1), we felt compelled to deal with this fact in 

our models. One plausible way to do so is to assume that offenders eventually drop 

out of their careers. We have chosen to model dropout as a decison made after 
, 

each imprisonment. With a certain probability, the offender will decide to end his/her 

career. Call that probability p, and make it another parameter in the model. The 

probability of being available for the survey is now equal to 

q{B, 0, p} = L;~; p/ {exp{-.5[ 8+0-Q]a)-exp{-[{ho+Q]a)}/Q, (5.3) 

where Q = ([8+0]2_4p80)1/2, and everything else is as in (5.2). Notice that q{B, 0,0) 

= q{8, 0), so that (5.2) is the special case of (PDROP) with p = O. The likelihood 

function for this model is 

{SA} 

where the extra factor of (1-p) for each completed imprisonment arises from the fact 

that the inmate has, of course, not ended his/her career after each of the previous 

imprisonments. We do not know whether the career will end after the current 

imprisonment. Once again, there is no closed form for the' MLE's, but we can 

calculate them numerically using iterative methods. We find: 

e = 0.01192, 

S = 0.04288, 

p = 0.56742. 

The log-likelihood for this model is -64678, which is 3005 higher than the log­

likelihood for the model without dropout, and only one parameter has been added. 

Notice that the estimated probability of dropout is quite high. This dropout 

probability forces many people to end their careers early and leads to a distribution 

of inmates' ages which more closely resembles the survey data. In fact, Figure 

NEWAGECOMPARE shows how remarkably close the predicted age distribution of 

inmates is to the observed data. The predicted age distribution is calculated as 

p = c p q(8, J, p), 
a a 

where c is the constant required to make the sum of p equal to 1. 
a 

All of the remaining models we will fit include a parameter for dropout. There 

was no point in including such a parameter in the Simplest_model of Section 5.1, 

because no one in the sample has dropped out of his/her career. It is only when we 

introduce the correction for sampling bias and compare the age distribution of 
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Figure 13: Comparison of Observed and Predicted Age Distributions 
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inmates to that of the population at large that it make sense to introduce dropout 

into a stochastic model based on inmate data. 

5.4. Hierarchical Models 

In this section, we consider the possibility of heterogeneity in the ~ffender 

sample. The average street time before an imprisonment in the sample is 71.199 

months with a standard deviation of 84.9 months. This standard deviation is about 

20% higher than what would be expected if the sample were actually from an 

exponential distribution with mean 71.199. One possibility, of course, is that the 

exponential distribution does not fit well. Another possibility is that not all street 

times have the same exponential distribution. We saw in Section 4.1.2 that those 

with juvenile records had shorter street times than those without. This suggests that 

we consider e to be a random variable with a distribution in the offender population. 

The model would be that the ith offender selects a value of e, say e., according to 
1 

this distribution, and then proceeds to be imprisoned at rate e .. 
1 

5.4.1. A Simple Hierarchical Model 

The simplest distribution for a random variable is one which is concentrated on 

only two values eland e 2 and has probabi I ities p 1 and P2 for the two values. Let 

e 1 < e 2' Then those offenders who "choose" e, will be imprisoned at a lower rate 

than those who "choose" e 2' To fit such a model we need not estimate the value 

of e for every individual, but rather, only the two values e, and e 2 together with 

the probability P, (since p = 1 - p J. The likelihood function becomes more 
2 " 1 

complicated now, because we must distinguish the street times of different inmates. 

If inmate i has nj imprisonments with total length Sj and the total street time is Xi' 

then the likelihood function is 

nm ,[L2 ,p.e~j([l-pJon-lexp(-{Xe.+s.o})/q(8., 0, p}]. 
1= J= J J 1 J 1 J 

(5.5) 

The MLE's are 

8, = 0.004541, 

8
2 = 0.023017, 

P, = 0.431435, 

P2 = 0.568565, 

'8 ::: 0.042763, 

p = 0.543828. 

The log-likelihood is -64070, which is 608 larger than the log-likelihood of the model 

of Section 5.3, with two extra parameters. Note that the high rate is estimated to be 
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about 5 times as high as the low rate. 

5.4.2. Some Variations on the Simple Hierarchical Model 

If a distribution over two values for 0 provides a better fitting model than a 

single 0, it is possible that three values could be even better. In fact, we can use 

any distribution over the possible 0 values we might like. To fit a distribution with 

three 0 values requires changing the upper limit of summation in (5.5) from 2 to 3 

and assuring that 0
1 

< O
2 

< e 3' Also, we must add a parameter P3 and assure that 

p 1 + P2 + P3 = 1. Doing these things allows us to obtain MLE's as follows: 

e = 0.002877, 
1 

'0
2 

= 0.017559, 

'0 
3 

= 0.066545, 

P1 = 0.294479, 

P2 = 0.655751, 

P3 = 0.049779, 

& = 0.042777, 

P = 0.537653. 

The log-likelihood is -64020, which is only 50 higher than for the two-e model, with 

two extra parameters. We are approaching the point of diminishing returns with 

models allowing a finite number of values of e. 

To carry the procedure one last step, in order to be sure that no great 

improvement is still possible, we fit a hierarchical model with a distribution for e 
concentrated on four values. The log-likelihood only increased to -64018, or 2 higher 

than the previous model with two extra parameters. Adding one value of 0 at a 

time appears to have reached its limit of usefulness. 

5.4.3. A Continuous Parameter Model 

Instead of requiring that e., the imprisonment rate for offender i, be one of 
J 

finitely many values, we can allow O. to be a random variable with a continuous 
J 

distribution. A choice for that distribution which will make certain calculations easy 

is an element of the Gamma family, due to the close connection it has with the 

family of exponential distributions. Moreover, the Gamma family allows a wide 

variety of shapes and it is a reasonable choice. 

If we replace the discrete distribution of () with a Gamma distribution, the 
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likelihood function becomes 

II~ [lOO8a+nj{[1-p]0)nj-lexp{-{{x.+,8)8+s.0}),8al{r(a)q{8, 0, p)}d8], 
1=1 Jo I I 

(5.6) 

where a and ,8 are the parameters of the Gamma distribution, which need to be 

estimated. The MLE's are 

a = 1.9888, 

/J = 134.55, 

~ = 0.042695, 

A 

P = 0.55123, 

and the log-likelihood is -64039. This can be considered an improvement over only 

the model of Section 5.3, because that is the only model for which it is a direct 

generalization. It has a substantial increase in log-likelihood (639) with only one 

additional parameter. The models in Sections 5.4.1 and 5.4.2 are also generalizations 

of the one in Section 5.3, but in a different direction. The continuous parameter 

model appears to provide a fit somewhere between that of the two-8 and three-e 

models. 

The parameters a and ,8 of the continuous parameter model are not directly of 

interest, but they do specify the distribution of 8 in the population of offenders. 

For example, the mean of 8 is a/,8, which has MLE of 0.01478. This represents the 

mean imprisonment rate of a randomly selected offender. 

5.5. Models With Multiple Offense Types 

Since we saw in Section 4.1.1 that street time varied according to the offense 

that was next committed, we tried to fit models in which different types of offenses 

led to different waiting times for the next imprisonment. 

distinguished violent from non-violent offenses. 

5.5.1. The Simplest Model 

As a start, we 

The simplest model we fit assumed homogeneity among the offender 

population, but that the time until the next imprisonment was the minimum of two 

independent exponential random variables with means 1/8 and 1/8 . Conceptually, 
v nv 

the offender is waiting until the next time he/she is imprisoned for a violent crime 

with rate e and at the same time, waiting until the next time he/she is imprisoned 
v 

for a non-violent crime with rate 8 . Whichever comes first determines the type of 
nv 

offense for which he/she is imprisoned and the length of street time between 

imprisonments. Specifically, the time has an exponential distribution with mean 



., ., ........ 

34 

1/(8 +8 }, and the next 
v nv 

crime is violent with probability 8 1{8 +8 ). If we let 8 = 8 
v v nv v 

+ 8 , then the 
nv 

probability of being in prison at the time of the survey is still given 

by (5.2), since the distribution of the times between imprisonments is exponential 

with mean 1/8. The likelihood function for the part of the data consisting solely of 

the times between imprisonments and the lengths of imprisonments is still given by 

(5.4). However, we have more data which we did not take into account in (5.4). They 

are the indicators of the types of offense the imprisonments were for. Each 

imprisonment for a violent crime contributes a factor of 8 /8, and each imprisonment 
v 

for a non-violent crime contributes a factor of 8 /8. These extra factors will make nv 
the likelihood smaller, because the factors are all less than 1.0. However, it is easy 

to see that the model we are now considering is a generalization of the model in 

Section 5.3. If 8 :: 8 :: 0.58, then the model of Section 5.3 is a special case of 
v nv 

the two-offense type model. The factors 8 18 and 8 /8, Which we did not include in 
v nv 

the likelihood are all equal to 0.5 in that case. Hence, in order to compare the log-

likelihoods of the two models, we must subtract log (2) from the log-likelihood of 
e 

the model in Section 5.3 for every imprisonment. The total amount for the 10873 

imprisonments is 7537. 

Fitting the model described, yields the following MLE's: 

e = 0.005376, 
v 

e :: 0.006554, 
nv 

~ :: 0.043001, 

p :: 0.571517. 

When making comparisons with the earlier models, we must remember that the 

overall imprisonment rate is e + e , which has MLE = .011930. The log-likelihood 
v nv 

for this model is -72161. This should be compared to -64678 - 7537 = -72215. The 

improvement over the model of Section 5.3 is 54 with one extra parameter. 

5.5.2. A Hierarchical Version of the Model 

Since the model of Section 5.4.1 made such a noticable improvement over the 

Simple model of Section 5.3, we might expect the same generalization of the two­

offense type model to provide a similar improvement. We generalize in the same 

way, by assuming that the jth offender is able to "choose" his/her (8 ., fJ J from a 
V,J nV.J 

distribution of pairs. A simple distribution analogous to the type used in Section 5.3 

is to allow two different values for each of 8 and e , making a total for four pairs 
v nv 

of values. Since it seems unlikely a priori that the choice of violent imprisonment 

rate is independent of the choice of non-violent imprisonment rate, we fit a general 
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distribution over the four pairs of imprisonment rates. 

The MLE's for this model are 

8 
v, 1 

= 0.003228, 

8 = 0.014732, 
v,2 

8 
nV,1 

= 0.001494, 

8 = 0.015926, 
nV,2 

~ = 0.042974, 

P 1, 1 
= 0.419749, 

P 1 2 = 0.335583, 

P2,1 = 0.077643, 

P2,2 = 0.167025, 

P = 0.577104. 

Here P1,2 is the probability that an offender will choose the first {lower} value for 

violent imprisonment rate and the second (higher) value of non-violent rate. The 

other p.. are defined similarly. One can easily calculate that the estimated 
1.1 

probability that an offender chooses both rates low or both rates high is larger than 

one would get by assuming independence with the same marginal probabilities. The 

log-likelihood for this model is -71242, which is 919 larger than the model in Section 

5.5.1 with 5 extra parameters. It can also be compared to the model of Section 

5.4.1. which had a log-likelihood of -64070 - 7537 = -71607. The improvement is 365, 

with 4 extra parameters. 

5.5.3. Differing Imprisonment Lengths 

It was evident in Table 8 that the times spent in prison for different offenses 

varied somewhat by offense. In particular, violent crimes (especially murder and 

robbery) led to longer imprisonment lengths than the other types. We considered 

extending the model of Section 5.5.2 to allow the distribution of imprisonment 

lengths for violent crimes be exponential with mean 1//) and the imprisonment 
v 

lengths for non-violent crimes to be exponential with mean 1//) • 
nv 

The major difficulty in fitting the model just described is that the probability of 

an offender being in prison at the time of the survey is very difficult to obtain in 

closed form. As a first approximation, we used formula (5.3), with (5 = 

21 {( 11 (5 )+( 11 /) )}. which appears to provide a good approximation to the true 
v nv 
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probability of being in prison for moderately disparate values of 0 and 0 • After 
v nv 

finding the approximate MLE's, we then calculated the exact probability of being in 

prison and recalculated the log-likelihood at the approximate MLE's .. so that we could 

compare it to the other models. 

The estimates under this model are 

e = 0.003149, 
v,1 

e = 0.013907, 
v,2 

e 
nV,l 

= 0.001555, 

e 
nV,2 

= 0.016249, 

~ = 0.033053, 
v 

~ = 0.060450, 
nv 

P 1, 1 
.. 0.409300, 

p, 2 = 0.323485, 

P21 = 0.103216, 

P22 = 0.164000, 

P = 0.579683. 

The log-likelihood is -70334, which is 908 higher than the same model with only one 

value of O. Notice that' the estimated average time spent in prison for violent 

crimes is 1/~ = 30.3 months, while the average time spent for non-violent crimes is 
v 

estimated to be 1/~ = 16.5 months. 
nv 

5.6. Models With Late Starters 

In Table 6, we saw that the time until the first imprisonment was generally 

longer than the times between later imprisonments. This suggests that a model for 

incarceration careers should include a provision for the first street time to have a 

different distribution than the later street times. The simplest way to do this is to 

assume that the imprisonment career does not start until after some initial waiting 

time. In this section, we consider two models with this property. 

5.6.1. Everyone Starts Late 

First, we assume that all offenders wait an amount of time before embarking 

on their imprisonment careers. We assume that the waiting time has an exponential 

distribution with mean 1/:\. This makes the time until the first imprisonment have a 
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distribution which is the convolution of two exponential distributions, one with mean 

1!A. and the other with mean 1/{B +B ). The contribution to the likelihood function v nv 
for that first imprisonment for subject i, x., is 

I, 

AO {exp(-(Jx. ,}-exP(-Ax. ,}}/P.-B), 
t I, I, 

where 8 = (J +8 and t = v or nv depending on whether the first imprisonmen~ is for 
v nv 

a violent or non-violent offense. 

As in Section 5.5.3, the probability of being in prison at the time of the survey 

is difficult to calculate, so we will find approximate MLE's and then only calculate 

the probability at the values of the approximate MLE's. The MLE's for this model are 

given by 

7J = 0.003093, v. , 

e = 0.016435, v,2 

e nv. , = 0.001641, 

e 
nV,2 = 0.0 17914, 

~ 
v = 0.032867, 

~ = 0.059915, nv 

P, 1 = 0.42405, 

P12 = 0.29142, 

P2,1 = 0.08385, 

P2.2 = 0.20068, 

P = 0.55274, 

~ = 0.17862. 

The log-likelihood is -70285, which is 49 higher than the model of Section 5.5.3 with 

one extra parameter. This is a somewhat smaller improvement than one would 

expect in light of Table 6. We believe that this may be due to the fact that not all 

offenders have longer first street time than later ones. 

that all offenders in the survey start their careers late. 

in the next section. 

5.6.2. Not Everyone Starts Late 

Hence, we should not require 

This assumption is modified 

Table 6 suggests that not all offenders wait an extended time for their first 

imprisonments. Those with juvenile records seem to wait only as long for their first 

imprisonment as those without a juvenile imprisonment wait for their later ones. For 
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this reason, we introduce one fUrther parameter PL to stand for the probability that 

an offender is a late starter. With probability PL the likelihood function is as 

described in Section 5.6.1. With probability (1-PL)' the likelihood is as in Section 

5.5.3. For this model, the MLE's are 

e 
v,1 

= 0.003482, 

e = 0.021449, 
v,2 

e = 0.001812, 
nV,1 

e = 0.021696, 
nV,2 

~ 
v 

= 0.033187, 

~ ::: 0.060744, 
nv 

p 1,1 = 0.362441, 

P 1.2 
= 0.308661, 

P2 1 = 0.097110, 

P22 = 0.231788, 

P = 0.555675, 

~ = 0.022333, 

P
L 

= 0.579451. 

The log-likelihood is -69942, which is 343 higher than the model which had all 

offenders starting late (Section 5.6.1..) Notice that the estimated average time until 

start of career, for those who start late, is 1/~ = 44.78 months compared to 5.60 

months in the previous model, 

5.6.3. A Model Distinguishing First Impr'isonment Lengths 

For our final stage of model fitting, we fit a model which allows the length of 

the first imprisonment to have a different distribution from the later imprisonment 

lengths. Such a model was suggested both by Table 9 and by Table 10. We 

introduced a distinction between first and later imprisonment lengths by saying that 

the first imprisonment has exponential distribution with mean 1/0 Ov' if it is for a 

violent offense, or mean 11 Do ' if it is for a non-violent offen;..e. This is far more 
nv 

convenient mathematically than distinguishing the first imprisonment for each offense 

type separately. 

The contribution to the likelihood function for the first imprisonment length s'l 
I, 

of offender i is a factor of 
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III 0
0 

exp{-oo s. 1}, if violent and not the only imprisonment, 
v v I, 

• 0
0 

exp{-oo s. 1}, if non-violent and not the only imprisonment, nv nv I. 

o exp {-a 0 s. 1} I if violent and the only imprisonment. 
v I, 

III exp{ -Do s. 1}, if non-violent and the only imprisonment. 
nv I, 

The MLE's for this model are: 

e 
v.l 

= 0.003575. 

7J = 0.019169, 
v.2 

7J 
nv.l 

= 0.001533, 

7J = 0.021291, nV,2 

5 = 0.039549, 
v 

'3 
nv = 0.060423, 

5 
ov 

= 0.029355, 

50 = 0.060246, nv 

p 1.1 = 0.310992, 

P 1.2 
= 0.301169, 

P2.1 = 0.102791, 

P2,2 = 0.285048 

p = 0.568655, 

~ = 0.020295, 

A 

PL = 0.610366. 

The log-likelihood is -69249, which is 693 higher than for the model of Section 5.6.2 

with two extra parameters. 

There is something odd. however, about the estimates for this model. The 

estimated length of the first imprisonment is 1/5
0v 

= 34.07 months for violent 

offenses and 1/5
0 

= 16.60 months for non-violent offenses. On the other hand, the 
nv 

estimated length of later imprisonments is 1/~ = 25.29 months for violent offenses 
v 

and '5 = 16.55 months for non-violent offenses. This is counter to what is nv 
suggested in Tables 9 and 10. One reason may be that, although Tables 9 and 10 

suggest that first imprisonments are shorter than later ones. those tables do not 
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include the current imprisonment. There are many offenders who were in prison for 

the first time at the time of the survey with rather long imprisonments. Tables 9. and 

10 may be misleading because they only compare first and later imprisonments for 

those offenders who managed to finish their first imprisonment already. For 

example, there are 447 inmates in Table 10 whose first adult imprisonment was for a 

violent offense, and who completed that first imprisonment. The average length of 

those imprisonments was 25.57, months. Not included in Table 10 are 2667 inmates 

who are currently serving their first and only imprisonment for a violent offense. 

The average of the elapsed times in those imprisonments is 30.63 months. The 

distinction between current first imprisonments and completed first imprisonments 

for non-violent offenses is not nearly as dramatic. 

JUst to make sure that the addition of eleven new parameters to the model of 

Section 5.3 did not destroy the nice fit of the empirical age distributions seen in 

Figure 13, we used the model of this Section to predict the empirical age 

distribution, and the result is in Figure LAST AGECOMPARE. As one can see, this 

model also predicts an age distribution very much like what was actually observed. 

5.7. Conclusions From the Models Fit 

The conclusions from fitting the above models can be summarized as follows: 

• It seems apparent that there is heterogeneity in the offender population 
with regard to length of time spent on the street between imprisonments. 
The mean and standard deviation of the fitted distribution of imprisonment 
rates are 0.022738 and 0.01146 respectively. 

• There appears to be a difference between the rates at which offenders are 
imprisoned for different types of offenses . 

., Many offenders (estimated to be about 61%) start their imprisonment 
careers later than the rest. The estimated amount of time is 49.3 months 
later. 

• There is evidence that offenders drop out of their imprisonment careers at 
with moderately high probability, accounting for the over representation of 
young offenders in prisons . 

., First imprisonments for violent offenses are estimated to be somewhat 
longer than later imprisonments for violent offenses (by 8.8 months}, while 
there is essentially no difference between the estimated lengths of first 
and later imprisonments for non-violent offenses. 

One must be careful not to over interpret the estimates in the fitted models. 

For example, the fact that the hierarchical model with two different imprisonment 
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Figure 14: Comparison of Observed and Predicted Age Distributions 

for Final Model 
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rates (Section 5.4.1) fits much better than a model with only one imprisonment rate 

does not mean that there actually are two groups of offenders, some who are 

imprisoned at a high rate and others who are imprisoned at a low rate. Rather, it 

suggests that there is indeed heterogeneity in the population of offenders, which is 

better modeled by imagining two groups of offenders, whose street times are more 

similar to each other than to those in the other group, than by assuming the variation 

in street time is large but all offenders vary the same. It will take a new survey 

which is better constructed to be able to sort out the heterogeneity in a more exact 

manner. 

Similarly, the estimated 61% of the offenders who may have started their 

careers late by an estimated 49.3 months did not all start 49.3 months later. Rather, 

we fit an exponential distribution to the late start time which had a mean of 49.3 

months, but was spread over a" possible late start times from 0 months to 

indefinitely long. 

One must also be careful when interpreting the estimated imprisonment rates. 

These wi" be estimated rates at the beginning of an offender's career (either age 18 

or start of career for late starters). Given that an offender has survived to an older 

age in his/her career, the estimated imprisonment rate for that individual will be 

lower. This is due in part to the feature of the model Which lets high rate offenders 

drop out of their careers early . 
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6. Further Analyses to be Done 

6.1. Problems With The Data 

There are some problems which we have not yet dealt with in this data set, but 

which deserve further attention. First there is the problem of inmate recall. This 

has manifested itself already in that some inmates report a certain number of 

imprisonments, but then describe a different number. Even though the set of such 

inmates is itself large (4,364) these are only the ones we know have had recall 

problems. There are the thousands of others who reported apparently complete 

histories, but who also did not recall completely. It will be a serious modelling task 

to introduce the uncertainty due to recall problems. A second problem is the 

voluntary nature of participation in the survey. It would also be difficult to model 

the relationship between criminal career parameters and willingness to participate in 

the survey. 

A third, minor problem with the data, is the fact that occasionally an 

interviewer did not ask the survey questions in the correct order. This led to certain 

inmate records being difficult to extract correct information from. Finally, there is the 

problem which arises from possible falsification of information by the offender. 

Dispite the best assurances of confidentiality, not every inmate is likely to believe 

an interviewer who says that no further prosecutions will result from any answers 

they give. 

6.2. Sampling Plan 

In none of our analyses, did we make explicit use of the sampling plan which 

was used to collect the data set. In doing a likelihood based analysis, as we have 

done, one need not consider the sampling plan so long as one explicitly models the 

joint distribution of all relevant variables in the population of interest and models 

the probabi I ity of selecting each particular subject. We have modelled the population 

of offenders as a prior exchangeable in the sense that we have no information to 

distinguish one from the next until we begin the interview process. We have 

explicitly modelled the probability of selecting each inmate via the bias correction 

mechanism described in Section 5.2 
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6.3. Other Covariates 

Although our exploratory analysis indicated that race did not make as large a 

difference in either street times or imprisonment times as did the other factors we 

considered, race does seem to make a large difference in a person's initiation into 

the offender population. That is. there are far more blacks in the prisons than one 

would predict based simply on their proportion in the population at large. Although 

this phenomenon is similar to that of the age distributions, which also differed 

dramatically, there is no mechanism such as dropout which will correct this 

imbalance in the model. The only way to account for the difference would be to 

introduce differential initiation rates for blacks and nonblacks. This should be done 

in future models for this data. 

Another intuitively plausible covariate which We failed to examine is drug use. 

In future analyses, we would hope to explore the relations between drug use and 

both street and imprisonment times as well as -any possible relation to choice of 

crime type. The same analyses should be done for sex, although the inmate 

populations are predominately male. Once again, differential initiation rates for 

males and females would be needed to account for the difference between prison 

and population distributions. 
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