APPENDIX C EXAMPLES IN SAS

In SAS, the NCVS sample design must be appropriately specified for all survey procedures using the *varmethod*, *strata*, and *cluster* statements. The *varmethod=taylor* statement is included within the *proc* statement of each analysis. The following statements must be included to provide the stratification and PSU variables.

strata yr_grp v2117; cluster v2118;

Weight statements are also required, but vary depending on the type of estimate (as shown in *Table 3-1*). Because SAS does not support the specification of formulas within the analysis procedures, for the calculation of victimization rates analysts must first create a new variable equal to the product of the victimization count and the adjustment factor (*ADJINC_WT*), multiplied by 1,000 (as outlined in the examples below).

The *domain* statement is used to limit the analysis to the appropriate set of cases¹. While all combinations of variables included in the *domain* statement will be included in the results, only the results meeting all subpopulation conditions are relevant. For this reason, prior to each analysis a "sub" variable is created based on all exclusions (e.g. victimizations occurring outside of the US and outside the year(s) of interest). Including this single recoded variable on the *domain* statement simplifies examination of the results.

Examples 1 and 2 demonstrate how to estimate the total number of victimizations. *Examples 3* and 4 demonstrate how to calculate the proportion of victimizations with given characteristics. *Examples 5* and 6 demonstrate the calculation of personal and property victimization rates for victimization characteristics included on the modified person and

¹ In Section 3, the term analysis domain is used to define subsets of the population based on victims or victimizations. In SAS, the domain statement is used to identify records to include in analyses. To avoid confusion between the two uses, the term "analysis class" will replace the term "analysis domain" in *Appendix C*.

household files, and *Example 7* demonstrates the calculation of victimization rates for victimization characteristics not on the modified files. Examples are included for both singleand pooled-year estimates.

C.1 Victimization Totals

The SAS *surveymeans* procedure is used to estimate the total number of victimizations from the modified incident-level file. The specific crime type of interest is specified in the *var* statement, and the analysis class(es) of interest (i.e. subsets of the population based on characteristics of the victimization or victim) are specified on the *domain* statement. *Examples 1A-1C* demonstrate the calculation of victimization totals for single years, and *Examples 2A-2C* demonstrate pooled year estimates.

Example 1: Number of victimizations, single year

Examples 1A and *1B* below are estimates of personal crimes, while *Example 1C* is an estimate of property crimes. *Examples 1A* and *1C* provide overall crime estimates, while *Example 1B* provides estimated totals for person-level characteristics of interest.

Example 1A - Total number of violent victimizations, 2011

```
Year(s): 2011
Crime Type: violent victimizations (vcrime)
Analysis Classes: n/a
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2011 (year=2011)
```

```
Code:
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and year=2011);
run;
proc surveymeans data=anset varmethod=taylor sum; *a;
    strata yr_grp v2117; *c;
    cluster v2118; *d;
    weight newwgt; *e;
    domain sub; *b;
    var vcrime; *f;
```

run;

Code Comment(s):

- a) Specifies input dataset and sample design
- b) Subpopulation indicator
- c) Specifies stratification
- d) Specifies primary sampling units
- e) Specifies analysis weight
- f) Outcome of interest

Output:

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted rows).

The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Statistics

Variable	Sum	Std Dev
ffffffffffff	ffffffffffffffffff	fffffffffff
vcrime	29789137	1061238
ffffffffffff	ffffffffffffffffff	fffffffffff

Domain Analysis: sub

sub	Variable	Sum	Std Dev
ffffffff		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffff
0	vcrime	23976614	927768
1	vcrime	5812523	357912
ffffffff	ſŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦŦ	*fffffffffffffffffffffff	fffffffff

Example 1B - Total number of violent victimizations by sex, age category, and race/ethnicity, 2011

Year(s): 2011 Crime Type: violent victimizations (*vcrime*) Analysis Classes: sex (*sex*), age category (*agecat*), and race/ethnicity (*race_eth*) Weight: *newwgt* Subpopulation: within the United States (*exclude_outUS=0*); non-dummy records (*dummy=0*); 2011 (*year=2011*)

```
Code:
data anset;
   set adjincident;
   sub=(exclude_outUS=0 and dummy=0 and year=2011);
run;
proc surveymeans data=anset varmethod=taylor sum;
   domain sub*sex sub*agecat sub*race_eth; *a;
   strata yr_grp v2117;
   cluster v2118;
   weight newwgt;
   var vcrime;
run;
```

Code Comment(s):

a) Analysis class variables (victim characteristics), crossed with subpopulation indicator

Output:

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted rows).

The SURVEYMEANS Procedure

Data Summary

Number d	of Strata	160
Number o	of Clusters	320
Number o	of Observations	37853
Sum of W	Veights	115824878

Statistics

Variable	Sum	Std Dev
ffffffffffffffff	fffffffffffffff	fffffffffff
vcrime	29789137	1061238
ffffffffffffffff	fffffffffffff	ffffffffffff

Domain Analysis: sub*sex

S	ub	sex	Variable	Sum	Std Dev
ffffff	fffff	fffffffff	<i>.</i>	ffffffffffffffffffff	fffffff
	0	Male	vcrime	12443058	568391
		Female	vcrime	11533557	551251
	<mark>1</mark>	Male	vcrime	3209725	236961
		Female	vcrime	2602798	252786
ffffff	ffffff	fffffffff		ffffffffffffffffff	fffffff

Domain Analysis: sub*agecat

sub	age	ecat	E	Variable	Sum	Std Dev
fffffffff	ffff	fff	ffffffff	ffffffffffffffffff	fffffffffffffff	fffffffff
0	12	to	14	vcrime	2350414	190557
	15	to	17	vcrime	2351591	231698
	18	to	20	vcrime	2120993	169061
	21	to	24	vcrime	2671424	218252
	25	to	34	vcrime	5052311	372358
	35	to	49	vcrime	5846191	336304
	50	to	64	vcrime	3086188	201164
	65	or	older	vcrime	497502	61068
1	12	to	14	vcrime	488383	77368
	15	to	17	vcrime	428880	64692
	18	to	20	vcrime	843753	220104
	21	to	24	vcrime	617720	69926
	25	to	34	vcrime	1114834	118262
	35	to	49	vcrime	1365450	141011
	50	to	64	vcrime	776857	90922
	65	or	older	vcrime	176646	46321
~~~~~~~~~~				~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~	~~~~~~~~

Domain Analysis: sub*race_eth

sub	race_eth	Variable	Sum	Std Dev
fffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffffffff		fffffffff
0	Non-Hispanic White	vcrime	16135969	781567
	Non-Hispanic Black	vcrime	3535332	327426
	Hispanic	vcrime	2877571	187303
	Non-Hispanic Other	vcrime	807284	131642
	Non-Hispanic More than One Race	vcrime	620459	102505
1	Non-Hispanic White	vcrime	3719729	242039
	Non-Hispanic Black	vcrime	812173	181536
	Hispanic	vcrime	895434	130311
	Non-Hispanic Other	vcrime	197082	46736
	Non-Hispanic More than One Race	vcrime	188105	43090
fffffffffffff	****	ffffffffffffffff		fffffffff

Example 1C - Total number of property victimizations, 2011

Year(s): 2011 Crime Type: property victimizations (*pcrime*) Analysis Classes: n/a Weight: *newwgt* Subpopulation: within the United States (*exclude_outUS=*0); non-dummy records (*dummy=*0); 2011 (*year=*2011)

Code:

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and year=2011);
run;
proc surveymeans data=anset varmethod=taylor sum;
    domain sub;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    var pcrime;
```

run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Statistics

Variable	Sum	Std Dev
fffffffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffff
pcrime	85126878	1577101
ffffffffffffffff	fffffffffffffffff	ffffffff

#### Domain Analysis: sub

sub Variable Sum Std Dev

## Example 2: Number of crimes, aggregated years

*Examples 2A* and *2B* are estimates of personal crimes, while *Example 2C* is an estimate of a property crime. *Examples 2A* and *2C* provide overall crime estimates and *Example 2B* provides estimated totals for a victimization-level characteristic of interest. The code provided calculates the estimated number of victimization across the pooled years. To calculate the average number of victimizations per year, estimated totals and standard errors must be divided by the number of pooled years, as shown in the following examples.

## Example 2A - Total and Average number of aggravated assaults, 2009-2011

Year(s): 2009-2011 Crime Type: aggravated assaults (*aast*) Analysis Classes: n/a Weight: *newwgt* Subpopulation: within the United States (*exclude_outUS=*0); non-dummy records (*dummy=*0); 2009-2011 ((2009 <= year) and (year <=2011)) Code:

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and (2009 <= year) and
       (year <=2011)); *a;</pre>
```

run;

```
proc surveymeans data=anset varmethod=taylor sum;
    domain sub;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    var aast;
run;
```

run;

## **Code Comment(s):**

 a) Subpopulation indicator incorporates the range of years to be analyzed

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row). The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Statistics

Variable	Sum	Std Dev
fffffffffffffffff		ffffffffffffff
AAST	5189174	257111
fffffffffffffffff	fffffffff	ffffffffffffff

Domain Analysis: sub

sub	Variable	Sum	Std Dev
fffffffff	fffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffff
0	AAST	2248758	206953
<mark>1</mark>	AAST	2940416	160814
Ffffffffff	fffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffff

NOTE: The estimate above represents the total number of aggravated assaults from 2009-2011. To obtain the average number of aggravated assaults, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

avg number of aggravated assaults =  $\frac{\text{total number of aggravated asaults}}{\text{number of pooled years}}$ =  $\frac{2940416}{3}$ = 980139 SE(avg number of aggravated assaults) =  $\frac{\text{se(total number of aggravated asaults)}}{\text{number of pooled years}}$ =  $\frac{160814}{3}$ = 53605

Example 2B - Total and average number of aggravated assaults involving firearm, 2009–2011

Year(s): 2009-2011
Crime Type: aggravated assaults (aast)
Analysis Classes: weapon category (weapcat)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2009-2011 ((2009 <= year) and (year <=2011))</pre>

Code:

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and (2009 <= year) and
        (year <=2011));
run;
proc surveymeans data=anset varmethod=taylor sum;
    domain sub*weapcat;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    var aast;
```

run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Statistics

Variable	Sum	Std Dev
fffffffffffffffff	fffffffffffffff	ffffffffffff
AAST	5189174	257111
ffffffffffffffff	ffffffffffffff	ffffffffffff

Domain Analysis: sub*weapcat

sub	weapcat	Variable	Sum	Std Dev
ffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	, , , , , , , , , , , , , , , , , , ,	fffffffffff
0	No Weapon	AAST	110713	21766
	Firearm	AAST	647127	176781
	Knife or sharp object	AAST	601554	74541
	Other type weapon	AAST	706901	98434
	Type weapon unknown	AAST	158175	40728
	Do Not Know if off had weapon	AAST	24289	6567.738419
<mark>1</mark>	No Weapon	AAST	318542	53740
	<mark>Firearm</mark>	AAST	778706	81552
	Knife or sharp object	AAST	642022	65521
	Other type weapon	AAST	939927	96628
	Type weapon unknown	AAST	228755	52288
	Do Not Know if off had weapon	AAST	32463	11506
ffffffffff	+++++++++++++++++++++++++++++++++++++++	ffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffffff

NOTE: The estimate above represents the total number of aggravated assaults involving a firearm from 2009-2011. To obtain the average number of aggravated assaults involving a firearm, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

and much an of a constant of account of the second second to the first second sec	total number of aggravated asaults w firearm
avg number of $aggravatea$ assaults w firearm =	number of pooled years
$=\frac{778706}{3}$	
= 259569	
$SE(avg number of aggravated assaults w firearm) = \frac{1}{2}$	se(total number of aggravated asaults w firearm) number of pooled years
$=\frac{81552}{3}$	
= 27184	

Example 2C - Total and average number of household burglaries, 2009-2011

```
Year(s): 2009-2011
Crime Type: household burglary (hburg)
Analysis Classes: n/a
Weight: newwgt
Subpopulation: Within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2009-2011 ((2009 <= year) and (year <=2011))
```

```
Code:
```

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and (2009 <= year) and
        (year <=2011));
run;
proc surveymeans data=anset varmethod=taylor sum;
    domain sub;
    strata yr_grp v2117;
```

```
cluster v2118;
weight newwgt;
var hburg;
```

run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

Data Summary

of Strata	160
of Clusters	320
of Observations	37853
leights	115824878
	f Strata f Clusters f Observations eights

#### Statistics

Variable	Sum	Std Dev
fffffffffffffff	ffffffffffffffff	ffffffffff
HBURG	17350128	480495
fffffffffffffff	ſſſſſſſſſſſſſ	ffffffffff

#### Domain Analysis: sub

#### 

NOTE: The estimate above represents the total number of household burglaries from 2009-2011. To obtain the average number of household burglaries, both the estimate and the standard error must be divided by the number of pooled years (3), as follows:

avg number of household burglaries =  $\frac{\text{total number of household burglaries}}{\text{number of pooled years}}$ =  $\frac{10201317}{3}$ = 3400439

 $SE(avg number of household burglaries) = {se(total number of household burglaries) \over number of pooled years}$ 

$$=\frac{336711}{3}$$
  
= 112237

## C.2 Victimization Proportions

The SAS *surveyfreq* procedure is used to estimate the percent distribution of victimizations in a specific analysis class across covariates from the modified incident-level file. Subpopulation and covariates of interest are specified on the *table* statement.

## Example 3: Percent distribution of victims across characteristics, single year

*Example 3A* is an estimate of personal crimes, while *Example 3B* is an estimate of property crimes. In *Example 3A*, both the analysis classes and covariates are specified based on person- and incident-level characteristics. In *Example 3B*, the analysis class is specified based on an incident-level characteristic, while the covariates are household-level characteristics.

# *Example 3A - Distribution of female violent crime victims by age category, race/ethnicity, and victim-offender relationship, 2011*

Year(s): 2011
Analysis Classes: female (sex=2); violent victimizations (vcrime=1)
Covariate(s): age category (agecat); race/ethnicity (race_eth); victim-offender relationship
(direl)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2011 (year=2011); female (sex=2); violent victimizations (vcrime=1)

## Code:

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and year=2011 and sex=2 and
        vcrime=1);
run;
proc surveyfreq data=anset varmethod=taylor; *a;
    strata yr_grp v2117; *b;
    cluster v2118; *c;
    weight newwgt; *d;
    table /*e*/sub*(/*f*/agecat race_eth direl) / row nocellpercent
        nofreq nowt;
```

run;

## **Code Comment(s):**

- a) Specifies input dataset and sample design
- b) Specifies stratification
- c) Specifies primary sampling units
- d) Specifies analysis weight
- e) Subpopulation indicator
- f) Covariates of interest

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYFREQ Procedure

Data	Summary
------	---------

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Table of sub by agecat

		Row	Std Err of
sub	agecat	Percent	Row Percent
fffffff	fffffffffffffffff	ſ	ffffffffffff
0	12 to 14	4.4827	0.2112
	15 to 17	5.2166	0.2419
	18 to 20	6.6596	0.2631
	21 to 24	9.0951	0.3107
	25 to 34	20.6693	0.4669
	35 to 49	27.2827	0.4232
	50 to 64	19.1136	0.4089
	65 or older	7.4803	0.2600
	Total	100.000	
<mark>1</mark>	12 to 14	7.6428	1.8588
	15 to 17	6.2620	1.3309
	18 to 20	15.5020	5.3677
	21 to 24	9.3116	1.6367
	25 to 34	19.3023	2.3616
	35 to 49	24.5841	3.0542
	50 to 64	12.9129	1.9929
	65 or older	4.4822	1.7220
	Total	100.000	
Total	12 to 14		
	15 to 17		
	18 to 20		
	21 to 24		
	25 to 34		
	35 to 49		
	50 to 64		
	65 or older		

## 

#### Table of sub by race_eth

					Row	Std	Err of
sub	race_eth				Percent	Row	Percent
ffffffff	fffffffffffff	fffffffff	ffff	fffffff	fffffff	fffffff	fffffff
0	Non-Hispanic	White			65.4165		0.7871
	Non-Hispanic	Black			14.2469		0.6862
	Hispanic				14.4004		0.5881
	Non-Hispanic	Other			3.6912		0.2494
	Non-Hispanic	More than	0ne	Race	2.2450		0.1751

	Total	100.000	
1	Non-Hispanic White Non-Hispanic Black Hispanic Non-Hispanic Other Non-Hispanic More than One Race	59.8656 19.4289 11.6743 4.4212 4.6101	4.4568 5.1812 1.9826 1.5083 1.2872
	Total	100.000	
Total	Non-Hispanic White Non-Hispanic Black Hispanic Non-Hispanic Other Non-Hispanic More than One Race		
	T-+-1		

## Table of sub by direl

		Row	Std Err of
sub	direl	Percent	Row Percent
fffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	ffffffffffff
0	intimates	10.6971	0.6071
	other relatives	6.8193	0.5450
	well known/casual acquaintances	26.4125	0.7750
	strangers	33.1309	0.8289
	do not know relationship	6.6340	0.2820
	do not know number of offenders	16.3063	0.5064
	Total	100.000	
1	intimates	23.2306	3.5018
	other relatives	9.9822	1.6418
	well known/casual acquaintances	35.2831	4.5594
	strangers	25.3356	3.1567
	do not know relationship	2.7056	0.6099
	do not know number of offenders	3.4630	0.9380
	Total	100.000	

-----

Total intimates other relatives well known/casual acquaintances strangers do not know relationship do not know number of offenders

Total

Example 3B - Distribution of property crime victims by household income, MSA status, and region, 2011

Year(s): 2011
Analysis Classes: property victimizations (pcrime=1)
Covariate(s): household income (hincome); MSA status (msa); region (region)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2011 (year=2011); property victimizations (pcrime=1)

Code:

```
data anset;
    set adjincident;
    sub=(exclude_outUS=0 and dummy=0 and year=2011 and pcrime=1);
run;
proc surveyfreq data=anset varmethod=taylor;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    table sub*(hincome msa region) / row nocellpercent nofreq nowt;
run;
```

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYFREQ Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Table of sub by hincome

		Row	Std Err of
sub	hincome	Percent	Row Percent

0	Less than \$7,500	5.8068	0.3420
	\$7,500 to \$14,999	7.9607	0.3342
	\$15,000 to \$24,999	9.7039	0.3290
	\$25,000 to \$34,999	9.2893	0.3/13
	\$35,000 to \$49,999	11.4065	0.3506
	\$50,000 to \$74,999	11.6421	0.3815
	\$75,000 or more	17.9292	0.4836
	Unknown	26.2615	0.7121
	Tatal	100,000	
	10TAL	100.000	
<mark>1</mark>	Less than \$7,500	6.4502	0.6755
	\$7,500 to \$14,999	8.6763	0.6591
	\$15,000 to \$24,999	10.2487	0.6577
	\$25,000 to \$34,999	8.8855	0.6006
	\$35,000 to \$49,999	11.7194	0.6256
	\$50,000 to \$74,999	11.4977	0.6959
	\$75,000 or more	16.4669	0.7300
	Unknown	26.0553	1.1284
	Total	100.000	
Total	Less than \$7,500		
	\$7,500 to \$14,999		
	\$15,000 to \$24,999		
	\$25,000 to \$34,999		
	\$35,000 to \$49,999		
	\$50,000 to \$74,999		
	\$75,000 or more		
	Unknown		
	Total		
	Frequency Mis	sing = 1600	

## Table of sub by msa

sub	msa	Row Percent	Std Err of Row Percent
0	Urban Suburban Rural	39.8233 44.9932 15.1835	1.3159 1.3979 1.5780
	Total	100.000	
1	Urban Suburban Rural	40.5967 46.6167 12.7866	1.5111 1.6160 1.6281
	Total	100.000	

Total	Urban Suburban Rural		
	Total		
	Frequency	Missing = 1	600
	Table of	sub by regi	on
sub	region	Row Percent	Std Err of Row Percent
0	Northeast Midwest South West	14.2339 24.0198 35.9385 25.8078	0.5989 1.1795 1.0096 0.7835
	Total	100.000	
1	Northeast Midwest South West	13.4005 21.4105 34.8072 30.3818	1.0813 1.4478 1.5195 1.3962
	Total	100.000	
Total	Northeast Midwest South West		
	Total		
	Frequency	Missing = 1	 600

## Example 4: Percent distribution of victims across characteristics, aggregated years

*Example 4A* is an estimate of personal crimes, while *Example 4B* is an estimate of property crimes. Both examples specify multiple covariates based on incident-level characteristics.

## *Example 4A - Percent of violent victimizations reported and not reported to police by type of crime, 2009-2011*

```
Year(s): 2009-2011
Analysis Classes: violent victimizations (vcrime=1)
Covariate(s): report status (notify); type of crime (newoff)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2009-2011 ((2009 <= year) and (year <=2011)); violent victimizations (vcrime=1)</pre>
```

Code:

```
proc surveyfreq data=anset varmethod=taylor;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    table sub*newoff*notify / row nocellpercent nofreq nowt;*a;
run;
```

## Code Comment(s):

```
a) The goal is to obtain the distribution of victimizations by
report status for each type of violent crime. Therefore,
newoff*notify is specified on the table statement and row
percents are requested. If the percent distribution of crimes
among those reported or not reported to police were desired,
column percents would be requested.
```

Output:

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

## The SURVEYFREQ Procedure

#### Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

The SURVEYFREQ Procedure

## Table of newoff by notify Controlling for sub=0

newoff	notify	Row Percent	Std Err of Row Percent
Rape & Sexual Assault	reported to police not reported to police do not know	41.1259 58.8741	6.2743 6.2743
	Total	100.000	
Robbery	reported to police not reported to police do not know	64.8907 35.1093	3.5035 3.5035
	Total	100.000	
Aggravated Assault	reported to police not reported to police do not know	54.4203 43.9368 1.6429	5.0909 5.0355 0.6685
	10191		

*Example 4B - Percent of property victimizations reported and not reported to police by type of crime, 2009-2011* 

Year(s): 2009-2011
Analysis Classes: property victimizations (pcrime=1)
Covariate(s): report status (notify); type of crime (newoff)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2009-2011 ((2009 <= year) and (year <=2011)); property victimizations (pcrime=1)</pre>

Code:

run;

```
proc surveyfreq data=anset varmethod=taylor;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    table sub*newoff*notify / row nocellpercent nofreq nowt;
run;
```

#### Output:

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYFREQ Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	37853
Sum of	Weights	115824878

Table of newoff by notify Controlling for sub=0

		Row	Std Err of
newoff	notify	Percent	Row Percent

Rape & Sexual Assault	reported to police not reported to police do not know	36.1639 63.8361	4.6125 4.6125
	Total	100.000	
Robbery	reported to police not reported to police do not know	63.1051 36.4855 0.4093	2.4092 2.4511 0.2529
	Total	100.000	
Aggravated Assault	reported to police not reported to police do not know	57.0243 41.4185 1.5572	2.6465 2.6741 0.6167
	Total	100.000	
Simple Assault	reported to police not reported to police do not know	42.5540 56.1714 1.2746	1.3444 1.3307 0.2690
	Total	100.000	
Personal Theft	reported to police not reported to police do not know	53.6418 44.8037 1.5545	4.1041 4.0528 0.9273
	Total	100.000	
Household Burglary	reported to police not reported to police do not know	52.8492 45.6522 1.4986	1.3038 1.2619 0.5373
	Total	100.000	
Motor Vehicle Theft	reported to police not reported to police do not know	82.4474 17.1571 0.3955	1.8638 1.8509 0.2299
	Total	100.000	
Theft	reported to police not reported to police do not know Total	31.8270 66.9627 1.2103 100.000	0.7299 0.7458 0.1756
Total	reported to police not reported to police do not know Total		

## Table of newoff by notify

Contro	lling	fon	cub-1
CONTRO.	TTTUR	TOP	SUD=1

newoff	notify	Row Percent	Std Err of Row Percent
Rape & Sexual Assault	reported to police not reported to police do not know Total		
Robbery	reported to police not reported to police do not know		
	Total	•	
Aggravated Assault	reported to police not reported to police do not know		
	Total		
Simple Assault	reported to police not reported to police do not know		·····
	Total		
Personal Theft	reported to police not reported to police do not know		· · · · · · · · · · · · · · · · · · ·
	Total		
Household Burglary	reported to police not reported to police do not know	54.5535 44.6500 0.7964	1.5082 1.4979 0.4070
	Total	100.000	
Motor Vehicle Theft	reported to police not reported to police do not know	83.7377 15.9900 0.2723	1.4000 1.3898 0.1922
	Total	100.000	
Theft	reported to police not reported to police do not know Total	31.1678 68.1654 0.6668 100.000	0.4962 0.4969 0.0674
Total	reported to police not reported to police do not know Total		

## C.3 Victimization Rates

Victimization rates are calculated from the modified person-level file (for personal crimes) or the modified household-level file (for property crimes) using the SAS *surveymeans* procedure. Since the victimization rate is a function of a constant and two variables, the analysis variable is created as a recode in a data step preceding the procedure. The victimization count for the victimization type of interest is multiplied by the victimization adjustment factor (*ADJINC_WT*), and this product is multiplied by 1,000. This new variable is used as the analysis variable in *surveymeans' var* statement, as demonstrated in the examples below.

To calculate victimization rates for person- or household-level characteristics, these characteristics are included on the *domain* statement (in addition to the derived "sub" variable that limits the analysis to records of interest). However, if victimization rates are desired based on incident-level characteristics, separate variables are defined for each level of the incident characteristic of interest and are included on the *var* statement. Exclusions based on the incident characteristics must be made when calculating victimization summaries, as outlined in *Section 3.2*. For example, the modified person- and household-level files exclude victimizations occurring outside of the United States. Because there are no dummy records on the modified person and household files, no exclusions are needed to remove dummy records from the analysis.

The modified person and household files contain the victimization counts needed to calculate victimization rates for the most common victimization characteristics analyzed using NCVS data. *Examples 5A-5C* demonstrate the calculation of personal and property victimizations rates that can be calculated directly from the modified person and household level files provided for a single year and *Examples 6A-6B* demonstrate these calculations for pooled year estimates. If an analyst wants to calculate a victimization rate for an incident-level characteristic that is not included on the modified files, preprocessing steps are needed to calculate victimization summaries from the incident-level file and move these summaries to the person file (for personal crimes) or the household file (for property crimes). *Section 3.2* documents these steps. *Examples 7A-7B* demonstrate the calculation of personal and property victimization rates for incident characteristics not included on the modified person and household files.

## Example 5: Rate of crime, single year

*Example 5A* is an estimate of an overall personal victimization rate. *Example 5B* is an estimate of a property victimization rate with the inclusion of household-level characteristics. *Example 5C* is an estimate of a personal victimization rate, where the characteristics of interest are incident-level characteristics. All three estimates are computed with variables available on the modified person and household files.

## Example 5A - Rate of simple assaults, 2011

Year(s): 2011 Crime Type(s): simple assault (*sast*) Analysis Classes: n/a Weight: *wgtpercy* Subpopulation: 2011 (*year=*2011) Calculated Directly from Adjusted Files?: yes

## Code:

```
data anset;
    set adjper;
    sub=(year=2011);
    vrsast=adjinc_wt*sast*1000; *a;
run;
proc surveymeans data=anset varmethod=taylor mean; *b;
    domain sub; *c;
    strata yr_grp v2117; *d;
    cluster v2118; *e;
    weight wgtpercy; *f;
    var vrsast;
run;
```

## **Code Comment(s):**

```
a) Specifies victimization recode
b) Specifies input dataset and sample design
c) Subpopulation indicator
d) Specifies stratification
e) Specifies primary sampling units
f) Specifies analysis weight
```

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row). The SURVEYMEANS Procedure

#### Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	814680
Number	of Observations Used	708493
Number	of Obs with Nonpositive Weights	106187
Sum of	Weights	1270197175

#### Statistics

		Std Error
Variable	Mean	of Mean
fffffffffffff	fffffffffffffffff	fffffffffff
vrsast	15.638820	0.610515
fffffffffffff	ſſſſſſſſſſſſ	ffffffffff

#### Domain Analysis: sub

					St	d Error
sub	o Vari	able		Mean		of Mean
fffffff	fffffff	ffffff	ffffffff	ffffff	ffffff	ffffff
6	) vrsa	st	15.7	707917		0.669826
1	vrsa	st	15.3	367133		1.176853
fffffff	ffffffff	ffffff	ffffffff	ffffff	ffffff	ffffff

## *Example 5B - Rate of household burglary by MSA status, household income, and family structure, 2011*

Year(s): 2011 Crime Type(s): household burglary (*hburg*) Analysis Classes: MSA status (*msa*); household income (*hincome*); family structure (*fam_structure2*) Weight: *wgthhcy* Subpopulation: 2011 (*year=2011*) Calculated Directly from Adjusted Files?: yes

Code:

```
data anset;
    set adjhh;
    sub=(year=2011);
    vrburg=adjinc_wt*hburg*1000;
run;
proc surveymeans data=anset varmethod=taylor mean;
    domain sub*msa sub*hincome sub*fam_structure2;
    strata yr_grp v2117;
    cluster v2118;
    weight wgthhcy;
    var vrburg;
```

run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	527673
Number	of Observations Used	398238
Number	of Obs with Nonpositive Weights	129435
Sum of	Weights	608895975

Statistics

Std Error Variable Mean of Mean ffffffffffffffffffffffffffff vrburg 28.319646 0.771345 ffffffffffffffffffffffffffff Domain Analysis: sub*HOUSEHOLD LOCALE

	HOUSEHOLD			Std Error
sub	LOCALE	Variable	Mean	of Mean

#### ******

0	Urban	vrburg	33.388469	1.179397
	Suburban	vrburg	22.284276	1.161647
	Rural	vrburg	35.072801	2.724182
<mark>1</mark>	Urban	vrburg	33.487009	2.515425
	Suburban	vrburg	25.445345	2.008611
	Rural	vrburg	33.019059	4.534446
ffffffff	ffffffffffffff	ŧffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffff

#### Domain Analysis: sub*hincome

				Std Error
sub	hincome	Variable	Mean	of Mean
ffffffffff	₣₣₣₣₣₣₣₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	fffffffffffff	££££££££££££££££££££££££££££££	ffffffffff
0	Less than \$7,500	vrburg	59.651675	5.784041
	\$7,500 to \$14,999	vrburg	56.887617	4.760163
	\$15,000 to \$24,999	vrburg	36.988937	3.625684
	\$25,000 to \$34,999	vrburg	32.461893	2.317476
	\$35,000 to \$49,999	vrburg	28.371919	1.752191
	\$50,000 to \$74,999	vrburg	21.164290	1.171311
	\$75,000 or more	vrburg	16.811149	0.868502
	Unknown	vrburg	25.476500	1.281015
<mark>1</mark>	Less than \$7,500	vrburg	67.164972	14.006749
	\$7,500 to \$14,999	vrburg	58.845099	9.944788
	\$15,000 to \$24,999	vrburg	42.776246	5.556782
	\$25,000 to \$34,999	vrburg	33.340142	5.830933
	\$35,000 to \$49,999	vrburg	26.301166	2.682444
	\$50,000 to \$74,999	vrburg	21.506342	3.006216
	\$75,000 or more	vrburg	12.288703	1.235878
	Unknown	vrburg	29.549576	2.702723

#### Domain Analysis: sub*Family Structure

				Std Error
sub Far	mily Structure	Variable	Mean	of Mean
fffffffffffff	<i>ŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧ</i> ŧŧ	ffffffffffffffffffffffffffffffffffff	fffffffffffffffff	ffffffffff
0 Two	o or more adults - W/O Children	vrburg	21.290559	0.930596
Two	o or more adults - With Children	vrburg	28.441133	1.059043
One	e Male Adult - W/O Children	vrburg	36.163618	3.603260
One	e Male Adult - With Children	vrburg	52.526591	9.167820
One	e Female Adult - W/O Children	vrburg	25.750941	1.588754
0ne	e Female Adult - With Children	vrburg	64.961684	4.899564
<mark>1</mark> Two	o or more adults - W/O Children	vrburg	24.208885	2.304288
Two	o or more adults - With Children	vrburg	29.610024	2.381918
One	e Male Adult - W/O Children	vrburg	30.997012	2.922347
One	e Male Adult - With Children	vrburg	46.669715	14.319366
One	e Female Adult - W/O Children	vrburg	30.105671	4.797870
One	e Female Adult - With Children	vrburg	61.962753	8.315094
fffffffffffff	<i>ŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧŧ</i> ŧŧ	fffffffffffffff	fffffffffffffffff	ffffffffff

## *Example 5C - Rate of violent crime by weapon involvement, injury, and victim-offender relationship, 2011*

Year(s): 2011 Crime Type(s): violent victimizations (*rsa+rob+aast+sast*) Analysis Classes: weapon involvement (*wpnuse*); injury (*inj*), victim-offender relationship (*rel*) Weight: *wgtpercy* Subpopulation: 2011 (*year=*2011) Calculated Directly from Adjusted Files?: yes

Code:

```
data anset;
 set adjper;
 sub=(year=2011);
*aggregate violent crimes into a single measure for each outcome of interest.
*a;
viol_weap1=(rsa_wpnuse1+rob_wpnuse1+aast_wpnuse1+sast_wpnuse1)*adjinc_wt*1000;
*b;
viol_weap2=(rsa_wpnuse2+rob_wpnuse2+aast_wpnuse2)*adjinc_wt*1000;
*c;
viol_weap3=(rsa_wpnuse3+rob_wpnuse3+aast_wpnuse3+sast_wpnuse3)*adjinc_wt*1000;
*d;
viol_injl=(rsa_injl+rob_injl+aast_injl+sast_injl)*adjinc_wt*1000;
*e;
viol_inj2=(rsa_inj2+rob_inj2+aast_inj2+sast_inj2)*adjinc_wt*1000;
*f;
viol_inj3=(rsa_inj3+rob_inj3+aast_inj3+sast_inj3)*adjinc_wt*1000;
*g;
viol_inj4=(rsa_inj4+rob_inj4+aast_inj4+sast_inj4)*adjinc_wt*1000;
*h;
viol_rel1=(rsa_rel1+rob_rel1+aast_rel1+sast_rel1)*adjinc_wt*1000;
*i;
viol_rel2=(rsa_rel2+rob_rel2+aast_rel2+sast_rel2)*adjinc_wt*1000;
*j;
viol_rel3=(rsa_rel3+rob_rel3+aast_rel3+sast_rel3)*adjinc_wt*1000;
*k;
viol_rel4=(rsa_rel4+rob_rel4+aast_rel4+sast_rel4)*adjinc_wt*1000;
*1;
viol_rel5=(rsa_rel5+rob_rel5+aast_rel5+sast_rel5)*adjinc_wt*1000;
*m;
viol_rel6=(rsa_rel6+rob_rel6+aast_rel6+sast_rel6)*adjinc_wt*1000;
run;
proc surveymeans data=anset varmethod=taylor mean;
      domain sub;
      strata yr_grp v2117;
      cluster v2118;
      weight wgtpercy;
      var viol_weap1-viol_weap3 viol_inj1-viol_inj4 viol_rel1-viol_rel6;
```

run;

## **Code Comment(s):**

- a) Yes, offender had a weapon
  b) No, offender did not have a weapon
  c) Do not know if offender had a weapon
  d) No injury
  e) Serious injury
  f) Minor injury
  g) Rape without other injuries
  h) Intimates
  i) Other relatives
  j) well known/casual acquaintances
  k) Strangers
- 1) Do not know relationship
- ${\tt m})$  Do not know number of offenders

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

#### Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	814680
Number	of Observations Used	708493
Number	of Obs with Nonpositive Weights	106187
Sum of	Weights	1270197175

#### Statistics

		Std Error
Variable	Mean	of Mean
fffffffffffff	ffffffffffffffffff	fffffffffff
viol_weap1	4.831854	0.239978
viol_weap2	16.905851	0.657311
viol_weap3	1.585757	0.126202
viol_inj1	17.472264	0.660110
viol_inj2	1.019748	0.101134
viol_inj3	4.522141	0.241631
viol_inj4	0.294720	0.053443
viol_rel1	3.679001	0.235064
viol_rel2	1.700361	0.168869
viol_rel3	6.996892	0.373455
viol_rel4	8.648548	0.364130
viol_rel5	1.324181	0.088132
viol_rel6	0.968963	0.106546
fffffffffffff	fffffffffffffff	fffffffffff

## Domain Analysis: sub

			Std Ennon
cub	Vaniahla	Moon	of Moon
ZUD	AULTADIG		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ر [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	
0	vioi_weapi	4.001214	0.279946
	vioi_weapz	1/.0211/2	0.732904
	vioi_weap3	1.612903	0.135616
	vioi_inji	17.608513	0.731000
	viol_inj2	0.991/32	0.110364
	viol_inj3	4.633226	0.2/4660
	viol_inj4	0.26351/	0.065/60
	viol_rel1	3.774519	0.255819
	viol_rel2	1.634968	0.188501
	viol_rel3	7.018989	0.395294
	viol_rel4	8.728594	0.410245
	viol_rel5	1.423006	0.109876
	viol_rel6	0.928292	0.124775
1	viol_weap1	4.637771	0.348181
	viol_weap2	16.452410	1.176199
	viol_weap3	1.479021	0.300596
	viol_inj1	16.936533	1.225512
	viol_inj2	1.129908	0.191335
	viol_inj3	4.085352	0.384823
	viol_inj4	0.417409	0.097062
	viol_rel1	3.303427	0.499653
	viol_rel2	1.957484	0.354815
	viol_rel3	6.910004	0.777927
	viol_rel4	8.333804	0.686701
	viol_rel5	0.935598	0.125684
	viol rel6	1.128885	0.215224
fffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i></i>	fffffffffff

## Example 6: Rate of crime, aggregated years

*Example 6A* is an estimate of a personal victimization rate with person-level characteristics of interest. *Example 6B* is an estimate of a property victimization rate with the inclusion of a household-level characteristic. Both estimates are computed with variables available on the modified person and household files.

# Example 6A - Rate of violent crimes reported to police by sex, age category, race/ethnicity, and marital status, 2009–2011

```
Year(s): 2009-2011
Crime Type(s): violent victimizations reported to police
(rsa_rpt1+rob_rpt1+aast_rpt1+sast_rpt1)
Analysis Classes: sex (sex); age category (agecat); race/ethnicity (race_eth); marital status
(marital)
Weight: wgtpercy
Subpopulation: 2009-2011 ((2009 <= year) and (year <=2011))
Calculated Directly from Adjusted Files?: yes</pre>
```

## Code:

```
data anset;
set adjper;
sub=((2009 <= year) and (year <=2011));
*aggregate violent crimes into a single measure for outcome of
interest;
viol_rpt1=(rsa_rpt1+rob_rpt1+aast_rpt1+sast_rpt1)*adjinc_wt*1000;
run;
```

```
proc surveymeans data=anset varmethod=taylor mean;
    domain sub*sex sub*agecat sub*race_eth sub*marital;
    strata yr_grp v2117;
    cluster v2118;
    weight wgtpercy;
    var viol_rpt1;
```

## run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row). The SURVEYMEANS Procedure

#### Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	814680
Number	of Observations Used	708493
Number	of Obs with Nonpositive Weights	106187
Sum of	Weights	1270197175

#### Statistics

		Std Error
Variable	Mean	of Mean
<i>ffffffffffffff</i>	ffffffffffffffffff	fffffffffff
viol_rpt1	10.942564	0.388276
ffffffffffffff	ſſſſſſſſſſſſ	fffffffffff

#### Domain Analysis: sub*sex

					Std Error
S	ub	sex	Variable	Mean	of Mean
ffffff	ffffff	ſ	****	, ffffffffffffffffffffff	ffffffff
	0	Male	viol_rpt1	12.263099	0.847527
		Female	viol_rpt1	11.735712	0.792736
	1	Male	viol_rpt1	9.682951	0.535355
		Female	viol_rpt1	10.801333	0.750092
ffffff	ffffff	ſ	<i>ffffffffffffffffff</i>	, fffffffffffffffffffff	ffffffff

#### Domain Analysis: sub*agecat

						Std Error
sub	agecat	-	Variable		Mean	of Mean
ffffffffffff	fffff		fffffffffff		fffffff	****
	12 +-	14		10	702204	1 514160
0	12 to	14	vioi_rpti	10.	706604	1.514160
	15 to	17	viol_rpt1	20.	325239	2.983613
	18 to	20	viol_rpt1	18.	508326	2.103361
	21 to	24	viol_rpt1	19.	158965	2.595491
	25 to	34	viol_rpt1	17.	998077	2.201344
	35 to	49	viol_rpt1	13.	197065	1.221089
	50 to	64	viol_rpt1	7.	657778	0.944521
	65 or	older	viol_rpt1	1.	662752	0.359343
<mark>1</mark>	12 to	14	viol_rpt1	10.	142548	1.528288
	15 to	17	viol_rpt1	13.	041282	1.607437
	18 to	20	viol_rpt1	22.	576998	4.639424
	21 to	24	viol_rpt1	16.	933566	1.895897
	25 to	34	viol_rpt1	14.	075923	1.173494
	35 to	49	viol_rpt1	11.	413987	0.893979
	50 to	64	viol_rpt1	6.	593241	0.582309
	65 or	older	viol_rpt1	1.	902745	0.371955
ffffffffff	fffff	ffffffff	ffffffffff	ffffffff	ffffff	fffffffffffffff

Domain Analysis: sub*race_eth

					Std Error
	sub	race_eth	Variable	Mean	of Mean
fff	ffffff;	*****	fffffffffffff	, ffffffffffffffffffffffff	ffffffffffff
	0	Non-Hispanic White	viol_rpt1	11.779361	0.689952
		Non-Hispanic Black	viol_rpt1	17.080468	2.129403
		Hispanic	viol_rpt1	9.606242	1.012843
		Non-Hispanic Other	viol_rpt1	8.094436	2.965192
		Non-Hispanic More than One Race	viol_rpt1	20.653312	4.002124
	1	Non-Hispanic White	viol_rpt1	9.591058	0.556192
		Non-Hispanic Black	viol_rpt1	16.324494	2.150383

Hispanic	viol_rpt1	9.110811	0.905751
Non-Hispanic Other	viol_rpt1	6.215577	1.431772
Non-Hispanic More than One Race	viol_rpt1	20.785537	3.675282
<i>fffffffffffffffffffffffffffffffffffff</i>	fffffffffffffff	fffffffffffffffffff	ffffffffffff

## Domain Analysis: sub*marital

				Std Error
sub	marital	Variable	Mean	of Mean
fffffffff	ffffffffffffffffffff	ffffffffffffff	fffffffffffffffffff	fffffffffff
0	Never Married	viol_rpt1	18.209104	1.219181
	Married	viol_rpt1	6.064960	0.536853
	Widowed	viol_rpt1	5.630742	2.102283
	Divorced	viol_rpt1	21.873231	2.587565
	Separated	viol_rpt1	37.178780	7.171082
1	Never Married	viol_rpt1	15.248824	1.034491
	Married	viol_rpt1	5.035802	0.383114
	Widowed	viol_rpt1	3.738650	0.916177
	Divorced	viol_rpt1	18.372702	1.868214
	Separated	viol_rpt1	38.603385	5.885568
fffffffff	ffffffffffffffffffff	ffffffffffff	ſſſſſſſſſſſſſ	fffffffffff

Example 6B - Rate of property crimes reported to police by household income, 2009–2011

Year(s): 2009-2011 Crime Type(s): property crimes reported to police (*hburg_rpt1+tft_rpt1+mvtft_rpt1*) Analysis Classes: household income (*hincome*) Weight: *wgthhcy* Subpopulation: 2009-2011 ((2009 <= year) and (year <=2011)) Calculated Directly from Adjusted Files?: yes

Code:

```
data anset;
set adjhh;
sub=((2009 <= year) and (year <=2011));
vrproprpt=(hburg_rpt1+tft_rpt1+mvtft_rpt1)*adjinc_wt*1000;
run;
```

proc surveymeans data=anset varmethod=taylor mean; domain sub*hincome; strata yr_grp v2117; cluster v2118; weight wgthhcy; var vrproprpt;

run;

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

#### Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	527673
Number	of Observations Used	398238
Number	of Obs with Nonpositive Weights	129435
Sum of	Weights	608895975

Statistics

		Std Error
Variable	Mean	of Mean
ffffffffffffffff	ſſſſſſſſſſſſſ	fffffffffff
vrproprpt	53.182550	0.936036
ffffffffffffff	ſſſſſſſſſſſſſ	ffffffffff

#### Domain Analysis: sub*hincome

		,			Std Error
sub	hincome		Variable	Mean	of Mean
ffffffffff	ffffffffffff	ffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ffffffffffffffffffff	ffffffffffff
0	Less than \$	7,500	vrproprpt	81.044611	8.658194

	\$7,500 to \$14,999	vrproprpt	74.357555	6.668412
	\$15,000 to \$24,999	vrproprpt	60.660916	3.555991
	\$25,000 to \$34,999	vrproprpt	58.303682	4.122739
	\$35,000 to \$49,999	vrproprpt	60.220186	3.250153
	\$50,000 to \$74,999	vrproprpt	56.186640	3.568633
	\$75,000 or more	vrproprpt	58.226671	2.115554
	Unknown	vrproprpt	49.863632	1.997445
1	Less than \$7,500	vrproprpt	64.052739	4.366416
	\$7,500 to \$14,999	vrproprpt	60.840821	3.678508
	\$15,000 to \$24,999	vrproprpt	54.831987	2.794859
	\$25,000 to \$34,999	vrproprpt	54.832067	3.222495
	\$35,000 to \$49,999	vrproprpt	55.921312	3.030289
	\$50,000 to \$74,999	vrproprpt	49.011134	2.029558
	\$75,000 or more	vrproprpt	49.946119	1.490552
	Unknown	vrproprpt	43.616987	1.544342
ffffffffff	<i>fffffffffffffffffffffffff</i>	fffffffffffffffff	fffffffffffffffff	ffffffff

## *Example 7:* Computing victimization rates based on incident characteristics not included on the provided file

The two examples below estimate personal and property victimization rates for incidentlevel characteristics not contained on the modified person and household files, and thus require the pre-processing steps outlined in *Section 3.2*. SAS is used to calculate victimization summaries from the incident-level file and merge incident summaries onto the household and person files. Victimization rates are then calculated from the modified person-level file (for personal crimes) or the modified household-level file (for property crimes). *Example 7A* is an estimate of a personal victimization rate and *Example 7B* is an estimate of a property victimization rate. *Example 7A* is for a single year, and *Example 7B* is for aggregated years.

## Example 7A - Rate of violent crimes by location of crime, 2011

Year(s): 2011 Crime Type(s): violent victimizations by location of crime (*violent_home*; *violent_other*) Analysis Classes: n/a Weight: *wgtpercy* Subpopulation: 2011 (*year=*2011) Calculated Directly from Adjusted Files?: no

```
Code:
```

*step1: identify records with victimization characteristic(s) of interest on the modified incident-level file ;

```
data example7a_inc;
set adjincident;
vcrime=(newoff in (1 2 3 4)); *a;
```

```
*identify location of crime;
if v4024 in (1 2 3 4) then place_inc=1; *b;
else if v4024 in (5 6 7) then place_inc=2; *c;
else if v4024 in (8 9 10 11) then place_inc=3; *d;
else if v4024 in (12 13 14 24 25 26 27) then place_inc=4; *e;
else if v4024 in (15 16 17) then place_inc=5; *f;
else if v4024 in (18 19) then place_inc=6; *g;
else if v4024 in (20 21 22) then place_inc=7; *h;
else if v4024 in (23) then place_inc=8; *i;
else if v4024=. then place_inc=9; *j;
```

```
*collapse location of crime;
if place_inc in (1 2) then place=1; *k;
else place=2; *l;
```

```
Code Comment(s):
  a) Identify violent crimes
  b) Respondent's home
  c) Near respondents home
  d) Friend's home
  e) Commercial
  f) Parking lot-garage
  g) School
  h) Open areas, on street or public transportation
  i) Other
  j) Missing
  k) Respondent's home/near respondent's home
  1) Other location
*step2: create victimization summary file ;
proc sort data=example7a_inc(keep=yearq idper serieswgt
                             violent_home violent_other);
by yearq idhh idper;
run;
*calculate the number of victimizations of each type by person
and reporting period ;
proc means data=example7a_inc noprint;
by yearq idper;
weight serieswgt;
var violent_home violent_other;
output out=violent_place_sums(drop=_type_ _freq_)
        sum=;
run;
*step3: merge victimization summary file onto the person-level
        file ;
proc sort data=adjper; by yearq idper; run;
data example7a_per;
merge adjper(in=a)
       violent_place_sums(in=b);
by yearq idper;
if a;
 if violent_home=. then violent_home=0; *a;
 if violent_other=. then violent_other=0;
run;
```

#### **Code Comment(s):**

a) The two incident count variables are missing for persons not included on the victimization summary file, so they are set to `0' (no victimizations of this type)

```
*calculate victimization rates ;
proc sort data=example7a_per; by yr_grp v2117 v2118; run;
data anset;
    set example7a_per;
    sub=(year=2011);
    *a;
    vrviolrhome=violent_home*adjinc_wt*1000;
    vrviolother=violent_other*adjinc_wt*1000;
run;
proc surveymeans data=anset varmethod=taylor mean;
    domain sub;
    strata yr_grp v2117;
    cluster v2118;
```

run;

#### **Code Comment(s):**

weight wgtpercy;

var vrviolrhome vrviolother;

a) The final step outlined in section 3.2 was to calculate the victimization adjustment factor, but it is already contained on the modified person file.

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	814680
Number	of Observations Used	708493
Number	of Obs with Nonpositive Weights	106187
Sum of	Weights	1270197175

#### Statistics

		Std Error
Variable	Mean	of Mean

ffffffffffffffff	ffffffffffffffffff	ffffffffffff
vrviolrhome	8.895617	0.371408
vrviolother	14.427845	0.557310
ffffffffffffffff	ſſſſſſſſſſſſſ	fffffffffffff

Domain Analysis: sub

			Std Error
sub	Variable	Mean	of Mean
ffffffffff	fffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffff
0	vrviolrhome	9.038327	0.425064
	vrviolother	14.476962	0.608688
1	vrviolrhome	8.334482	0.631375
	vrviolother	14.234720	1.153994
fffffffff	fffffffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffff

Example 7B - Rate of property crimes by time of day, 2009-2011

Year(s): 2009-2011 Crime Type(s): property crimes by time of day (*property_day*; *property_night*; *property_missing*) Analysis Classes: n/a Weight: *wgthhcy* Subpopulation: 2009-2011 ((2009 <= year) and (year <=2011)) Calculated Directly from Adjusted Files?: no

```
*step1: identify records with victimization characteristic(s) of
 interest on the modified incident-level file ;
data example7b inc;
 set adjincident;
pcrime=(newoff in (6 7 8)); *a;
 *identify time of incident;
 if v4021b in (1 2 3 4) then time_day=1; *b;
 else if v4021b in (5 6 7 8) then time_day=2; *c;
 else if v4021b in (9 98) then time_day=3; *d;
 *create binary classifications for each time, excluding dummy
 records and crimes that occurred outside of the united states;
property_day=(pcrime=1 and time_day=1 and exclude_outus=0 and
               dummy=0);
property_night=(pcrime=1 and time_day=2 and exclude_outus=0 and
              dummy=0);
property_missing=(pcrime=1 and time_day=3 and exclude_outus=0
              and dummy=0);
```

run;

#### 

```
*calculate the number of victimizations of each type by household and
reporting period ;
proc means data=example7b_inc noprint;
by yearq idhh;
weight serieswqt;
var property_day property_night property_missing;
output out=property_time_sums(drop=_type_ _freq_)
        sum=;
run;
*step3: merge victimization summary file onto the HH-level
        file ;
proc sort data=adjhh; by yearq idhh; run;
data example7b_hh;
merge adjhh(in=a)
       property_time_sums(in=b);
by yearq idhh;
if a;
 if property_day=. then property_day=0; *a;
if property_night=. then property_night=0;
 if property_missing=. then property_missing=0;
run;
```

#### **Code Comment(s):**

a) The three incident count variables are missing for households not included on the victimization summary file, so they are set to '0' (no victimizations of this type)

```
*calculate victimization rates ;
proc sort data=example7b_hh; by yr_grp v2117 v2118; run;
data anset;
     set example7b_hh;
     sub=((2009 <= year) and (year <=2011));</pre>
     *a;
     vrpropday=property_day*adjinc_wt*1000;
     vrpropnight=property_night*adjinc_wt*1000;
     vrpropmiss=property_missing*adjinc_wt*1000;
run;
proc surveymeans data=anset varmethod=taylor mean;
     domain sub;
     strata yr_grp v2117;
     cluster v2118;
     weight wgthhcy;
     var vrpropday vrpropnight vrpropmiss;
run;
```

## **Code Comment(s):**

a) The final step outlined in section 3.2 was to calculate the victimization adjustment factor, but it is already contained on the modified person file.

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

#### Data Summary

of Strata	160
of Clusters	320
of Observations	527673
of Observations Used	398238
of Obs with Nonpositive Weights	129435
Weights	608895975
	of Strata of Clusters of Observations of Observations Used of Obs with Nonpositive Weights Weights

#### Statistics

		Std Error		
Variable	Mean	of Mean		
ffffffffffffffff		ffffffffffffff		
vrpropday	54.546013	1.097167		
vrpropnight	59.332574	1.222059		
vrpropmiss	24.883746	0.735171		
ffffffffffffffffff		ffffffffffffff		

Domain Analysis: sub

		Std Error
sub Variable	Me	an of Mean
ffffffffffffffffffffff	ſſſſſſſſſſſſſſſſſ	ffffffffffffffffff
0 vrpropday	59.022848	1.518622
vrpropnig	ht 63.701678	1.688110
vrpropmis	s 26.018035	1.020754
1 vrpropday	51.620495	1.227080
vrpropnig	ht 56.477455	1.331527
vrpropmis	s 24.142513	0.806898
ffffffffffffffffffffff	ſſſſſſſſſſſſſſſſſ	ffffffffffffffffff

## C.4 Identifying Low Quality Estimates

This section demonstrates how to implement the recommendations for identifying low quality estimates and the rounding rules discussed in *Section 4* of the user's guide. Three types of data are needed to identify and flag low quality estimates, regardless of the estimate type: the estimate, the standard error of the estimate, and the unweighted sample size of the estimate. Because *Examples 1-7* provided details for obtaining estimates and standard errors, the examples in this section will focus primarily on calculating the percent relative standard error (RSE), calculating unweighted sample sizes, identifying estimates that should be flagged as unreliable, and verifying that estimates rounding to zero are not presented.

Unweighted sample sizes should take into account the series adjustment. For example, a series victimization with a series count of seven would count as seven victimizations in the unweighted sample size, while a non-series victimization would only count as one. This series adjustment is already incorporated in the victimization counts on the modified person and household-level files, so sample sizes for victimization rates are obtained by taking unweighted sums of victimization counts with the specified characteristic(s) of interest. However, for victimization totals and proportions, the series count must be included in the calculation of the sample size, as demonstrated in the examples below. *Example 8A* demonstrates implementation of flagging and rounding rules for victimization totals, *Example 8B* for victimization proportions, and *Example 8C* for victimization rates.

## Example 8A - Total number of personal thefts by sex and race/ethnicity, 2011

Year(s): 2011 Crime Type: personal thefts (*ptft*) Domain(s): sex (*sex*) and race/ethnicity (*race_eth*) Weight: *newwgt* Subpopulation: within the United States (*exclude_outUS=*0); non-dummy records (*dummy=*0); 2011 (*year=*2011)

## Code:

```
*calculate estimates and standard errors;
data anset;
    set adjincident;
    sub=(exclude_outus=0 and dummy=0 and year=2011);
run;
```

```
proc surveymeans data=anset varmethod=taylor sum;
    domain sub*sex sub*race_eth;
    strata yr_grp v2117;
    cluster v2118;
    weight newwgt;
    var ptft;
run;
*calculate sample sizes;
proc means data=anset sum;
    where sub;
    class sex race_eth;
    ways 1;
    weight serieswgt; *a;
    var ptft;
run;
```

#### **Code Comment(s):**

 a) Weight by the series weight to obtain the series-adjusted count of victimizations

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row).

The SURVEYMEANS Procedure

304
s 608
tions 112932
342486009
s 608 tions 112932 342486009

Data Summary

Statistics

Domain Analysis: sub*sex

sub	sex	Variable	Sum	Std Dev
fffffff	ffffffffffff	ffffffffffff		ffffffff
0	Male	PTFT	1244808	92801
	Female	PTFT	1377054	72295
1	Male	PTFT	53583	18914
	Female	PTFT	112187	19314
fffffff	ffffffffffff	ffffffffffff		ffffffff
Domai	n Analysis:	sub*race_eth	1	

sub	race_eth	Variable	Sum	Std Dev
ffffffffff	<i>fffffffffffffffffffffffffffff</i>	<i>ŧfffffffffffffffffffffffffffff</i>	ffffffffffffff	, ffffffffffff
0	Non-Hispanic White	PTFT	1615705	86826

	Non-Hispanic Black	PTFT	435124	52924
	Hispanic	PTFT	371336	44117
	Non-Hispanic Other	PTFT	172088	39824
	Non-Hispanic More than One Race	PTFT	27608	9540.767800
1	Non-Hispanic White	PTFT	83956	21479
	Non-Hispanic Black	PTFT	29507	10989
	Hispanic	PTFT	30287	10489
	Non-Hispanic Other	PTFT	13519	5943.552122
	Non-Hispanic More than One Race	PTFT	8501.872300	5281.778471
ffffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fffffffff	• • • • • • • • • • • • • • • • • • • •	ffffffffffffff

Analysis Variable : PTFT

race_eth	N Obs	Sum
<i>fffffffffffffffffffffffffffffffffffff</i>	ffffffffffffff	ffffffffff
Non-Hispanic White	4660	24.0000000
Non-Hispanic Black	911	9.000000
Hispanic	1183	9.000000
Non-Hispanic Other	315	6.000000
Non-Hispanic More than One Race ffffffffffffffffffffffffffffffffffff	186 fffffffffffffff	3.0000000 ffffffffff
sex N Obs Sum ffffffffffffffffffffffffffffffffff Male 3358 16.000000		

## **Identifying Unreliable Estimates:**

As outlined in *Section 4*, it is recommended that estimated totals meeting either of the following criteria be identified as unreliable. In addition, any estimate rounding to zero should not be displayed.

- RSE > 30%
- Count sample size  $\leq 10$

The percent relative standard error of an estimated total is calculated as:

$$\% RSE(Total) = \frac{SE(Total)}{Total} * 100$$

Estimated totals, standard errors, and unweighted sample sizes from the output above are included in *Table C-1* (in the "Total," "SE(Total)," and "n" columns, respectively). Percent RSEs are calculated based on the formula above. Based on the recommendations, five of the eight estimates are flagged as unreliable. The estimate for males is flagged because the percent RSE is greater than 30 percent, while the other four estimates are flagged both because their

RSEs exceed 30 percent and because their unweighted sample sizes are less than or equal to 10. All estimates can be displayed because no estimates round to zero.

Domain	Total	SE(Total)	n	%RSE (Total)	Flag as Unreliable?	Rounds to Zero?
Overall	165770.15	24276.55	51	14.64		
Male	53583.48	18913.90	16	35.30		
Female	112186.67	19313.73	35	17.22		
Non-Hispanic White	83955.56	21478.97	24	25.58		
Non-Hispanic Black	29506.98	10989.44	9	37.24		
Hispanic	30286.66	10488.60	9	34.63		
Non-Hispanic Other	13519.07	5943.55	6	43.96		
Non-Hispanic More than One Race	8501.87	5281.78	3	62.12	$\checkmark$	

 Table C-1.
 Identifying Low Quality Victimization Totals

*Example 8B – Distribution of motor vehicle theft in the Northeast Census Region by report status, 2011* 

Year(s): 2011
Domain(s): Northeast Census Region (region=1); motor vehicle theft (mvtft=1)
Covariate(s): report status (notify)
Weight: newwgt
Subpopulation: within the United States (exclude_outUS=0); non-dummy records (dummy=0);
2011 (year=2011); Northeast Census Region (region=1); motor vehicle theft (mvtft=1)

```
Code:
```

```
*calculate estimates and standard errors;
data anset;
     set adjincident;
sub=(exclude outus=0 and dummy=0 and year=2011 and region=1 and
mvtft=1);
run;
proc surveyfreq data=anset varmethod=taylor;
     strata yr_grp v2117;
     cluster v2118;
     weight newwgt;
     table sub*notify / row nocellpercent nofreq nowt;
run;
*calculate sample sizes;
proc means data=anset n;
     where sub;
     weight serieswgt; *a;
     class notify;
     var notify;
run;
```

## **Code Comment(s):**

a) Weight by the series weight to obtain the series-adjusted count of victimizations. Because flagging rules are based on the denominator sample size, only the overall sample size is needed (not estimates by report status).

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row). The SURVEYFREQ Procedure Data Summary

Number	of Strata	304
Number	of Clusters	608
Number	of Observations	112932
Sum of	Weights	342486009

#### Table of sub by notify

		Row	Std Err of
sub	notify	Percent	Row Percent
fffffff	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffffffff	ffffffffffff
0	reported to police	40.0671	0.3079
	not reported to police	58.9204	0.3136
	do not know	1.0125	0.0478
	Total	100.000	
1	reported to police	92.6011	5.4032
	not reported to police	7.3989	5.4032
	do not know	•	•
	Total	100.000	
Total	reported to police		
	not reported to police		
	do not know		

#### 

The MEANS Procedure

Analysis Variable : notify

## **Identifying Unreliable Estimates:**

As outlined in *Section 4*, it is recommended that victimization percentages (P) meeting either of the following criteria be flagged as unreliable. In addition, any estimate rounding to zero should not be displayed.

- RSE > 30%, where
  - If the percentage is  $\leq$  50%, use the RSE of log(*P*)
  - If the percentage is > 50%, use the RSE of log(100-*P*); or
- Denominator sample size  $\leq 10$

The percent relative standard errors of the log of the percentages (P) and (1-P) are calculated as:

$$\% RSE(\log(P)) = \frac{SE(P)}{P * abs(\log\left(\frac{P}{100}\right))} * 100$$
  
% RSE(log(100 - P)) =  $\frac{SE(P)}{(100 - P) * abs(\log\left(1 - \frac{P}{100}\right))} * 100$ 

Estimated percentages, standard errors, and the unweighted denominator sample size from the output above are included in *Table C-2* below (in the "P," "SE(P)," and "n (denom)" columns, respectively). Percent RSEs are calculated based on the formulas above. Based on these recommendations, none of the estimates are flagged as unreliable. The denominator sample size is 19, which is greater than the recommended threshold of 10. The percent RSEs for the reported and not reported estimates are 28.03, which are below the 30 percent threshold. However, because no respondents reported that they did not know whether or not the motor vehicle theft was reported to the police, the estimated percent is 0. This estimate should not be presented because it rounds to zero.

 Table C-2.
 Identifying Low Quality Victimization Percentages

Estimate	Р	SE(P)	n (denom)	%RSE(P) OR %RSE(100-P)	Flag as Unreliable?	Rounds to Zero?
Reported to Police	92.60	5.40	19	28.03		
Not Reported to Police	7.40	5.40	19	28.03		
Do Not Know	0.00	-	19	-		$\checkmark$

Example 8C – Rate of rape/sexual assault by sex, 2011

Year(s): 2011 Crime Type(s): rape/sexual assault (*rsa*) Domain(s): sex (*sex*) Weight: *wgtpercy* Subpopulation: 2011 (*year=*2011) Calculated Directly from Adjusted Files?: yes

Code:

```
*calculate estimates and standard errors;
data anset;
     set adjper;
     sub=(year=2011);
     vrrsa=adjinc_wt*rsa*1000;
run;
proc surveymeans data=anset varmethod=taylor mean;
     domain sub sub*sex;
     strata yr_grp v2117;
     cluster v2118;
     weight wgtpercy;
     var vrrsa;
run;
*calculate sample sizes;
proc means data=anset sum; *a;
     where sub;
     class sex;
     var rsa;
run;
```

## **Code Comment(s):**

b) Unweighted because the victimization count RSA already includes the series adjustment

## **Output:**

NOTE: Output is provided overall and by subpopulation. Only the output under "Domain Analysis: sub" with a "sub" value of 1 is relevant (highlighted row). The SURVEYMEANS Procedure Data Summary

Number	of Strata	160
Number	of Clusters	320
Number	of Observations	814680
Number	of Observations Used	708493
Number	of Obs with Nonpositive Weights	106187
Sum of	Weights	1270197175

Statistics

		Std Error
Variable	Mean	of Mean
fffffffffffffff	fffffffffffffff	ffffffffffff
vrrsa	1.115027	0.141041
fffffffffffffff	ffffffffffffffff	ffffffffffff

Domain Analysis: sub

				Std Error
su	b	Variable	Mean	of Mean
ffffff	fffff		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ffffffff
	0	vrrsa	1.157469	0.166403
	1	vrrsa	0.948146	0.162529
ffffff	ffff	, fffffffffffffffffffff	ŧfffffffffffffffff	ffffffff

#### Domain Analysis: sub*sex

				Std Error
sub	sex	Variable	Mean	of Mean
ffffffff	fffffffffff	fffffffffff	ffffffffffffffffffffffff	fffffffff
0	Male	vrrsa	0.173447	0.043650
	Female	vrrsa	2.095539	0.323622
<mark>1</mark>	Male	vrrsa	0.276019	0.089702
	Female	vrrsa	1.592869	0.332343
ffffffff	fffffffffff	fffffffffff	ffffffffffffffffffffffff	ffffffffff

The MEANS Procedure

Analysis Variable : RSA

## **Identifying Unreliable Estimates:**

As outlined in *Section 4*, it is recommended that victimization rates meeting either of the following criteria be flagged as unreliable. In addition, any estimate rounding to zero should not be displayed.

- RSE > 30%
- Numerator sample size  $\leq 10$

The percent relative standard errors of the victimization rates (VR) are calculated as:

$$\% RSE(VR) = \frac{SE(VR)}{VR} * 100$$

Estimates, standard errors, and unweighted sample sizes from the output above are included in *Table C-3* below (in the "VR," "SE(VR)," and "n (num)" columns, respectively). Percent RSEs are calculated based on the formula above. Based on these recommendations, the estimated victimization rate for males is flagged as unreliable because the percent RSE is greater than 30 percent and the sample size of the numerator is less than or equal to 10. Because none of the estimates round to zero, all three estimates can be presented.

Domain	VR	SE(VR)	n (num)	%RSE(VR)	Flag as Unreliable?	Rounds to Zero?
Overall	0.94815	0.16253	79	17.14		
Male	0.27602	0.0897	10	32.50	$\checkmark$	
Female	1.59287	0.33234	69	20.86		

 Table C-3.
 Identifying Low Quality Victimization Rates